A modified damped Newton method for linear complementarity problems

被引:0
作者
Zhong-Zhi Bai
Jun-Liang Dong
机构
[1] Academy of Mathematics and Systems Science,State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing
[2] Chinese Academy of Sciences,undefined
来源
Numerical Algorithms | 2006年 / 42卷
关键词
linear complementarity problems; damped Newton method; inexact splitting method; nondegenerate matrix; -matrix; 65H10; 65W05;
D O I
暂无
中图分类号
学科分类号
摘要
We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving an inexact splitting method for the linear complementarity problems. The global convergence of the resulting inexact splitting method is proved, too. Numerical results show that the new methods are feasible and effective for solving the large sparse linear complementarity problems.
引用
收藏
页码:207 / 228
页数:21
相关论文
共 40 条
  • [1] Bai Z.-Z.(1996)The convergence of parallel iteration algorithms for linear complementarity problems Comput. Math. Appl. 32 1-17
  • [2] Bai Z.-Z.(1998)Asynchronous parallel nonlinear multisplitting relaxation methods for the large sparse nonlinear complementarity problems Appl. Math. Comput. 92 85-100
  • [3] Bai Z.-Z.(1998)A class of asynchronous parallel nonlinear accelerated overrelaxation methods for the nonlinear complementarity problems J. Comput. Appl. Math. 93 35-44
  • [4] Bai Z.-Z.(1998)On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem IMA J. Numer. Anal. 18 509-518
  • [5] Bai Z.-Z.(1999)On the convergence of the multisplitting methods for the linear complementarity problem SIAM J. Matrix Anal. Appl. 21 67-78
  • [6] Bai Z.-Z.(1997)Matrix multisplitting relaxation methods for linear complementarity problems Int. J. Comput. Math. 63 309-326
  • [7] Evans D.J.(1998)Chaotic iterative methods for the linear complementarity problems J. Comput. Appl. Math. 96 127-138
  • [8] Bai Z.-Z.(2001)Matrix multisplitting methods with applications to linear complementarity problems: Parallel synchronous and chaotic methods Réseaux et systèmes répartis: Calculateurs Parallelès 13 125-154
  • [9] Evans D.J.(2002)Matrix multisplitting methods with applications to linear complementarity problems: Parallel asynchronous methods Int. J. Comput. Math. 79 205-232
  • [10] Bai Z.-Z.(2003)A class of asynchronous parallel multisplitting relaxation methods for large sparse linear complementarity problems J. Comput. Math. 21 773-790