Global existence and nonexistence for semilinear parabolic equations with conical degeneration

被引:0
作者
Hua Chen
Gongwei Liu
机构
[1] Wuhan University,School of Mathematics and Statistics
来源
Journal of Pseudo-Differential Operators and Applications | 2012年 / 3卷
关键词
Semilinear parabolic equations; Cone Laplacian; Totally characteristic degeneracy; Global solution; Blow-up; 35K10; 35B40; 58J45;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study the initial boundary value problem of semilinear parabolic equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_t-\triangle_\mathbb{B}u=|u|^{p-1}u}$$\end{document} on a manifold with conical singularity, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\triangle_\mathbb{B}}$$\end{document} is Fuchsian type Laplace operator investigated in Chen et al. (Calc Var 43:463–484, 2012) with totally characteristic degeneracy on the boundary x1 = 0. By using a family of potential wells, we obtain existence theorem of global solutions with exponential decay and show the blow-up in finite time of solutions. Especially, the relation between the above two phenomena is derived as a sharp condition.
引用
收藏
页码:329 / 349
页数:20
相关论文
共 18 条
[1]  
Chen H.(2012)Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with conical singularities Calc. Var. 43 463-484
[2]  
Liu X.(2011)Existence theory for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents Ann. Glob. Anal. Geom. 39 27-43
[3]  
Wei Y.(2007)Realizations of differential operators on conic manifolds with boundary Ann. Glob. Anal. Geom. 31 223-285
[4]  
Chen H.(2005)Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level Differ. Integr. Equ. 18 961-990
[5]  
Liu X.(2006)On potential wells and applications to semilinear hyperbolic and parabolic equations Nonlinear Anal. 64 2665-2687
[6]  
Wei Y.(1975)Saddle points and instability of nonlinear hyperbolic equations Isr. J. Math. 22 273-303
[7]  
Coriasco S.(1968)On global solutions of nonlinear hyperbolic equations Arch. Ration. Mech. Anal. 30 148-172
[8]  
Schrohe E.(2001)Ellipticity and invertibility in the cone algebra on Integr. Equ. Oper. Theory 41 93-114
[9]  
Seiler J.(undefined)-Sobolev spaces undefined undefined undefined-undefined
[10]  
Gazzola F.(undefined)undefined undefined undefined undefined-undefined