Solitary Wave Solutions for (1+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+2)$$\end{document}-Dimensional Nonlinear Schrödinger Equation with Dual Power Law Nonlinearity

被引:0
作者
Pallavi Verma
Lakhveer Kaur
机构
[1] Jaypee Institute of Information Technology,Department of Mathematics
关键词
Nonlinear Schrödinger equation; Dual power-law nonlinearity; -expansion method; Singular kink-type solutions; Solitons; Solitary wave solutions; Periodic solutions;
D O I
10.1007/s40819-019-0711-2
中图分类号
学科分类号
摘要
Here, tanϕ(ξ)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan \left( \frac{\phi (\xi )}{2}\right) $$\end{document}-expansion method is being applied on (1+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+2)$$\end{document}-dimensional nonlinear Schrödinger equation (NLSE) with dual power law nonlinearity. Spatial solitons and optial nonlinearities in materials like photovoltaic–photorefractive, polymer and organic can be identified by seeking help from NLSE with dual power law nonlinearity. Abundant exact traveling wave solutions consisting free parameters are established in terms of exponential functions. Various arbitrary constants obtained in the solutions help us to discuss the graphical behavior of solutions and also grants flexibility to form a link with large variety of physical phenomena. Moreover, graphical representation of solutions are shown vigorously in order to visualize the behavior of the solutions acquired for the equation.
引用
收藏
相关论文
共 109 条
[1]  
Zakharov VE(1972)Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non linear media Sov. J. Exp. Theor. Phys. 34 62-69
[2]  
Shabat AB(1985)Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics Phys. Rev. A 32 1201-1204
[3]  
Hefter EF(1993)Does the nonlinear Schrödinger equation correctly describe beam propagation? Opt. Lett. 18 411-413
[4]  
Akhmediev N(1998)Wave collapse in physics: principles and applications to light and plasma waves Phys. Rep. 303 259-370
[5]  
Ankiewicz A(2005)Nonlinear dynamics of secondary protein folding Phys. Lett. A 337 391-396
[6]  
Crespo JMS(2005)Electron states of semiconductor quantum ring with geometry and size variations Mol. Simul. 31 779-785
[7]  
Bergé L(2013)Deep-water waves: on the nonlinear Schrödinger equation and its solutions J. Theor. App. Mech. 43 43-54
[8]  
Berloff NG(2005)Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers Phys. Lett. A 342 228-236
[9]  
Filikhin I(1983)Variational approach to nonlinear pulse propagation in optical fibers Phys. Rev. A 27 3135-3145
[10]  
Deyneka E(2007)Some exact solutions of the variable coefficient Schrödinger equation Commun. Nonlinear Sci. 12 1355-1359