Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model

被引:0
作者
Jian Kang
Yan Guo
机构
[1] Liaocheng People’s Hospital,Department of Neurology
来源
Neurochemical Research | 2022年 / 47卷
关键词
Spinal cord injury; Exosome; hUC-MSC; Wnt signaling pathway; Apoptosis;
D O I
暂无
中图分类号
学科分类号
摘要
Spinal cord injury (SCI) often leads to personal and social-economic consequences with limited therapeutic options. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSC) have been explored as a promising alternative to cell therapies. In the current study, we explored the mechanism of hUC-MSC derived exosome's ameliorative effect on the spinal cord injury by combining data from in vivo contusion SCI model and in vitro cell viability of PC12 cell line stimulated with lipopolysaccharide. Intravenous administration of hUC-MSC derived exosomes dramatically improved motor function of Sprague–Dawley rats after SCI, with reduced apoptosis demonstrated by increased expression of B-cell lymphoma 2 (BCL2), decreased BCL2 associated X, apoptosis regulator (Bax), and reduced cleaved caspase 9. Conversely, exosome treatment reduced the transcription levels of astrocytes marker GFAP and microglia marker IBA1, suggesting a reduced inflammatory state from SCI injury. Furthermore, exosome treatment in vitro increased the cell viability of PC12 cells. Exosome application activated the Wnt/β-Catenin signaling in the spinal cord. Our study demonstrated that hUC-MSC derived exosomes could improve motor function through anti-apoptosis and anti-inflammatory effects. BCL2/Bax and Wnt/β-catenin signaling pathways were involved in the SCI process and could potentially mediate the protective effect of hUC-MSC derived exosomes.
引用
收藏
页码:1532 / 1540
页数:8
相关论文
共 50 条
  • [1] Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model
    Kang, Jian
    Guo, Yan
    NEUROCHEMICAL RESEARCH, 2022, 47 (06) : 1532 - 1540
  • [2] Application of Human Umbilical Cord Mesenchymal Stem Cells in Rat Spinal Cord Injury Model
    Sun, Xue-Cheng
    Wang, Hu
    Ma, Xu
    Xia, Hong-Fei
    ASAIO JOURNAL, 2023, 69 (06) : E256 - E264
  • [3] Exosomes Derived From miR-133b-Modified Mesenchymal Stem Cells Promote Recovery After Spinal Cord Injury
    Li, Dong
    Zhang, Peng
    Yao, Xiyang
    Li, Haiying
    Shen, Haitao
    Li, Xiang
    Wu, Jiang
    Lu, Xiaocheng
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [4] Application of Human Umbilical Cord Mesenchymal Stem Cells in Spinal Cord Injury
    Yang, Peng
    Li, Yun
    Zhang, Jing-Tao
    Wang, Lin-Feng
    Shen, Yong
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2017, 7 (05) : 393 - 400
  • [5] Functional recovery and microenvironmental alterations in a rat model of spinal cord injury following human umbilical cord blood-derived mesenchymal stem cells transplantation
    Zhang, Hongtao
    Yang, Huilin
    Zhang, Huanxiang
    Qu, Jing
    NEURAL REGENERATION RESEARCH, 2010, 5 (03) : 165 - 170
  • [7] Exosomes derived from GIT1-overexpressing bone marrow mesenchymal stem cells promote traumatic spinal cord injury recovery in a rat model
    Luo, Yongjun
    Xu, Tao
    Liu, Wei
    Rong, Yuluo
    Wang, Jiaxing
    Fan, Jin
    Yin, Guoyong
    Cai, Weihua
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2021, 131 (02) : 170 - 182
  • [8] Exosomes derived from miR-544-modified mesenchymal stem cells promote recovery after spinal cord injury
    Li, Chenggnag
    Li, Xiao
    Zhao, Bichun
    Wang, Chunfang
    ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2020, 126 (04) : 369 - 375
  • [9] Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells
    Hu, Sheng-Li
    Luo, Hai-Shui
    Li, Jiang-Tao
    Xia, Yong-Zhi
    Li, Lan
    Zhang, Li-Jun
    Meng, Hui
    Cui, Gao-Yu
    Chen, Zhi
    Wu, Nan
    Lin, Jiang-Kai
    Zhu, Gang
    Feng, Hua
    CRITICAL CARE MEDICINE, 2010, 38 (11) : 2181 - 2189
  • [10] A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury
    Zhou Zhilai
    Zhang Hui
    Jin Anmin
    Min Shaoxiong
    Yu Bo
    Chen Yinhai
    BRAIN RESEARCH, 2012, 1481 : 79 - 89