Dynamic programming for multidimensional stochastic control problems

被引:0
作者
Jin Ma
Jiongmin Yong
机构
[1] Purdue University,Department of Mathematics
[2] Fudan University,Laboratory of Mathematics for Nonlinear Science, Department of Mathematics, and Institute of Mathematical Finance
来源
Acta Mathematica Sinica | 1999年 / 15卷
关键词
Stochastic control; Dynamic programming; Viscosity solutions; Singular control; Impulse control; 93E20; 49L20; 49L25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study a general multidimensional diffusion-type stochastic control problem. Our model contains the usual regular control problem, singular control problem and impulse control problem as special cases. Using a unified treatment of dynamic programming, we show that the value function of the problem is a viscosity solution of certain Hamilton-Jacobi-Bellman (HJB) quasivariational inequality. The uniqueness of such a quasi-variational inequality is proved.
引用
收藏
页码:485 / 506
页数:21
相关论文
共 24 条
  • [1] Beněs V E(1980)Some solvable stochastic control problems Stochastics 4 39-83
  • [2] Shepp L A(1983)A class of singular stochastic control problems Adv Appl Probability 15 225-254
  • [3] Witsenhausen H S(1984)Connections between optimal stopping and singular stochastic control I. monotone follower problems SIAM J Contr & Optim 22 856-877
  • [4] Karatzas I(1986)Absolutely continuous and singular stochastic control Stochastics 17 91-109
  • [5] Karatzas I(1993)Discontinuous reflection, and a class of singular stochastic control problems for diffusion Stochastics & Stochastics Reports 44 225-252
  • [6] Shreve S E(1993)Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach Stochastics & Stochastics Reports 45 145-176
  • [7] Lehoczky J P(1992)Invesment-consumption models with transaction fees and Markov-chain parameters SIAM J Contr & Optim. 30 613-636
  • [8] Shreve S E(1990)Portfolio selection with transaction costs Math Oper Res 15 676-713
  • [9] Ma J(1989)Optimal correction problem of a multidimensional stochastic system Automatica 25 223-232
  • [10] Tang S(1994)Zero-sum differential games involving impulse controls Appl Math Optim 29 243-261