Complete monotonicity of functions involving the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-trigamma and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q}$$\end{document}-tetragamma functions

被引:0
作者
Feng Qi
机构
[1] Henan Polytechnic University,Institute of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2015年 / 109卷 / 2期
关键词
Completely monotonic function; Monotonicity; Inequality; -Digamma function; -Trigamma function; -Tetragamma function; Primary 33D05; Secondary 26A12; 26A48; 26D07; 33B15;
D O I
10.1007/s13398-014-0193-3
中图分类号
学科分类号
摘要
Let ψq(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _q(x)$$\end{document}, ψq′(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _q'(x)$$\end{document}, and ψq′′(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _q''(x)$$\end{document} for q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document} stand respectively for the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-digamma, q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-trigamma, and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-tetragamma functions. In the paper, the author proves along two different approaches that the functions [ψq′(x)]2+ψq′′(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\psi '_q(x)]^2+\psi ''_q(x)$$\end{document} for q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>1$$\end{document} and [ψq′(x)-lnq]2+ψq′′(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\psi _{q}'(x)-\ln q]^2 +\psi ''_{q}(x)$$\end{document} for 0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1$$\end{document} are completely monotonic on (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document}. Applying these results, the author derives monotonic properties of four functions involving the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-digamma function ψq(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _q(x)$$\end{document} and two double inequalities for bounding the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-digamma function ψq(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _q(x)$$\end{document}.
引用
收藏
页码:419 / 429
页数:10
相关论文
共 28 条
[1]  
Alzer H(2007)Grinshpan, Inequalities for the gamma and J. Approx. Theory 144 67-83
[2]  
Grinshpan AZ(2007)-gamma functions J. Math. Anal. Appl. 328 452-465
[3]  
Batir N(2000)On some properties of digamma and polygamma functions Math. Inequal. Appl. 3 239-252
[4]  
Elezović N(2011)The best bounds in Gautschi’s inequality J. Korean Math. Soc. 48 655-667
[5]  
Giordano C(2009)A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications Commun. Pure Appl. Anal. 8 1231-1249
[6]  
Pečarić J(2010)Properties and applications of a function involving exponential functions Hacet. J. Math. Stat. 39 219-231
[7]  
Guo BN(2013)Some properties of the psi and polygamma functions Analysis (Munich) 33 45-50
[8]  
Qi F(2014)On proofs for monotonicity of a function involving the psi and exponential functions Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 76 107-114
[9]  
Guo BN(2013)A completely monotonic function related to the Bull. Aust. Math. Soc. 88 309-319
[10]  
Qi F(2009)-trigamma function Commun. Pure Appl. Anal. 8 1975-1989