On Mean Sensitive Tuples of Discrete Amenable Group Actions

被引:0
作者
Xiusheng Liu
Jiandong Yin
机构
[1] Nanchang University,Department of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2023年 / 22卷
关键词
Følner sequence; Amenable group; Mean sensitive tuple; Weak sensitivity in the mean; 37D45; 43A07;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, G) be a G-system which means that X is a perfect compact metric space and G is a countable discrete infinite amenable group continuously acting on X. In this paper, for an invariant measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} of (X, G) and an integer n larger than 2, we introduce firstly the notions of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-mean n-sensitive tuple with respect to a Følner sequence of G and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-n-sensitive in the mean tuple with respect to a Følner sequence of G and we show that if μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is ergodic, then every measure-theoretic n-entropy tuple for μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is a μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-mean n-sensitive tuple with respect to each tempered Følner sequence of G. Then we introduce the concepts of mean n-sensitive tuple with respect to a Følner sequence of G and n-sensitive in the mean tuple with respect to a Følner sequence of G and we prove that each n-entropy tuple is a mean n-sensitive tuple with respect to each tempered Følner sequence of G for minimal G-systems. Finally, we introduce the notion of weakly n-sensitive in the mean tuple with respect to a Følner sequence of G and we obtain that the maximal mean equicontinuous factor with respect to a Følner sequence of G can be induced by the smallest invariant closed equivalence relation containing all weakly sensitive in the mean pairs with respect to the same Følner sequence of G.
引用
收藏
相关论文
共 76 条
[1]  
Akin E(2003)Li–Yorke sensitivity Nonlinearity 16 1421-1433
[2]  
Kolyada S(1967)Semigroups satisfying a strong Følner condition Proc. Am. Math. Soc. 18 587-591
[3]  
Argabright L(1980)Interval maps, factors of maps, and chaos Tohoku Math. J. 32 177-188
[4]  
Wilde C(1998)Notions of size and combinatorial properties of quotient sets in semigroups Topol. Proc. 23 23-60
[5]  
Auslander J(1993)A disjointness theorem involving topological entropy Bull. Soc. Math. Fr. 121 465-478
[6]  
Yorke J(1997)A variation on the variational principle and applications to entropy pairs Ergod. Theory Dyn. Syst. 17 29-43
[7]  
Bergelson V(1995)Entropy pairs for a measure Ergod. Theory Dyn. Syst. 15 621-632
[8]  
Hindman N(2002)Asymptotic pairs in positive-entropy systems Ergod. Theory Dyn. Syst. 22 671-686
[9]  
McCutcheon R(2019)Tilings of amenable groups J. Reine Angew. Math. 747 277-298
[10]  
Blanchard F(1960)Homomorphisms of transformation groups Trans. Am. Math. Soc. 94 258-271