Hölder norm estimate for a Hilbert transform in Hermitean Clifford analysis

被引:0
作者
Ricardo Abreu-Blaya
Juan Bory-Reyes
Fred Brackx
Hennie De Schepper
Frank Sommen
机构
[1] Universidad de Holguín,Facultad de Informática y Matemática
[2] Universidad de Oriente,Departamento de Matemática
[3] Ghent University,Clifford Research Group, Faculty of Engineering
来源
Acta Mathematica Sinica, English Series | 2012年 / 28卷
关键词
Hermitean Clifford analysis; Hilbert transform; fractal geometry; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
A Hilbert transform for Hölder continuous circulant (2 × 2) matrix functions, on the d-summable (or fractal) boundary Γ of a Jordan domain Ω in ℝ2n, has recently been introduced within the framework of Hermitean Clifford analysis. The main goal of the present paper is to estimate the Hölder norm of this Hermitean Hilbert transform. The expression for the upper bound of this norm is given in terms of the Hölder exponents, the diameter of Γ and a specific d-sum (d > d) of the Whitney decomposition of Ω. The result is shown to include the case of a more standard Hilbert transform for domains with left Ahlfors-David regular boundary.
引用
收藏
页码:2289 / 2300
页数:11
相关论文
共 50 条
[1]  
Bernstein S.(2002)Szegö projections for Hardy spaces of monogenic functions and applications Int. J. Math. Math. Sci. 29 613-624
[2]  
Lanzani L.(1953)Sur les fonctions conjuguées `a plusieurs variables (in French) Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings Series A 56 17-29
[3]  
Horváth J.(1995)Quaternionic Complex Variables: Theory and Application 27 14-46
[4]  
Shapiro M. V.(2002)-holomorphic functions, singular integral operators and boundary value problems, Parts I and II Complex Variables: Theory and Application 47 653-662
[5]  
Vasilevski N. L.(2004)Some remarks on the principal value kernel in ℝ Bull. Belg. Math. Soc. — Simon Stevin 11 163-180
[6]  
Delanghe R.(1992)On some properties of the Hilbert transform in Euclidean space J. Amer. Math. Soc. 5 455-481
[7]  
Delanghe R.(1994)Convolution singular integrals on Lipschitz surfaces Rev. Math. Iberoamer. 10 665-721
[8]  
Li C.(2006)Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces Comp. Var. Ell. Equ. 51 453-462
[9]  
McIntosh A.(1982)A new Hilbert transform on the unit sphere in ℝ Comp. Var. Theory Applic. 1 119-149
[10]  
Semmes S.(2002)Complexified Clifford analysis Math. Methods Appl. Sci. 25 1395-1413