Qualitative analysis and Hopf bifurcation of a generalized Lengyel–Epstein model

被引:0
|
作者
Mengxin Chen
Tian Wang
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Anhui University,School of Mathematical Sciences
来源
Journal of Mathematical Chemistry | 2023年 / 61卷
关键词
Lengyel–Epstein model; Hopf bifurcation; Steady states; Global stability.;
D O I
暂无
中图分类号
学科分类号
摘要
In this present paper, we deal with a generalized Lengyel–Epstein model with the zero-flux boundary conditions. Firstly, we give an attraction region and the boundedness estimates of the solutions to the parabolic equations. Hereafter, one performs the local and global stability of the unique positive equilibrium. The first Lyapunov exponent technique and the normal form theory are employed to investigate the directions of the Hopf bifurcation, respectively. It is found that the supercritical or the subcritical may occur in the generalized Lengyel–Epstein model. Finally, we explore the steady states of the elliptic equations. The boundedness, the nonexistence, and the existence of the steady states are performed. Numerical experiments well verify the theoretical analysis. Relevant theoretical results illustrate that the diffusion rates of the substance can affect the dynamical behaviors of such a generalized Lengyel–Epstein model.
引用
收藏
页码:166 / 192
页数:26
相关论文
共 50 条
  • [1] Qualitative analysis and Hopf bifurcation of a generalized Lengyel-Epstein model
    Chen, Mengxin
    Wang, Tian
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (01) : 166 - 192
  • [2] Chaos and Hopf Bifurcation Analysis of the Delayed Local Lengyel-Epstein System
    Liu, Qingsong
    Lin, Yiping
    Cao, Jingnan
    Cao, Jinde
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [3] Dynamic Analysis and Hopf Bifurcation of a Lengyel-Epstein System with Two Delays
    Li, Long
    Zhang, Yanxia
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [4] Hopf and Bautin bifurcations in a generalized Lengyel–Epstein system
    Luis Miguel Valenzuela
    Gamaliel Blé
    Manuel Falconi
    David Guerrero
    Journal of Mathematical Chemistry, 2020, 58 : 497 - 515
  • [5] Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model
    Du, Linglong
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 473 - 485
  • [6] Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system
    Valenzuela, Luis Miguel
    Ble, Gamaliel
    Falconi, Manuel
    Guerrero, David
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (02) : 497 - 515
  • [7] Qualitative Analysis of Bifurcating Solutions in the Lengyel-Epstein Model
    张丽娜
    吴建华
    数学进展, 2008, (01) : 115 - 117
  • [8] Bautin bifurcation for the Lengyel–Epstein system
    Xiaoqin P. Wu
    Matthewos Eshete
    Journal of Mathematical Chemistry, 2014, 52 : 2570 - 2580
  • [9] Bautin bifurcation for the Lengyel-Epstein system
    Wu, Xiaoqin P.
    Eshete, Matthewos
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (10) : 2570 - 2580
  • [10] Hopf bifurcations in Lengyel–Epstein reaction–diffusion model with discrete time delay
    H. Merdan
    Ş. Kayan
    Nonlinear Dynamics, 2015, 79 : 1757 - 1770