Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems

被引:0
作者
Liyou Fang
Tieshan Li
Zifu Li
Ronghui Li
机构
[1] Dalian Maritime University,Navigation College
来源
Nonlinear Dynamics | 2013年 / 74卷
关键词
Adaptive terminal sliding mode; Anti-synchronization; Chaos;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an adaptive terminal sliding mode control method for anti-synchronization of uncertain chaotic systems. By fusion of the terminal sliding mode control and the adaptive control techniques, a robust controller is designed so that the states tracking error can reach the terminal sliding mode surface and converge to zero in a finite time. Finally, some simulation results are included to demonstrate the effectiveness and the feasibility of the proposed anti-synchronization scheme.
引用
收藏
页码:991 / 1002
页数:11
相关论文
共 129 条
[1]  
Lorenz E.(1963)Deterministic nonperiodic flow J. Atmos. Sci. 20 130-141
[2]  
Kalman R.E.(1963)Lyapunov functions for the problem of Lur’e in automatic control Proc. Natl. Acad. Sci. USA 49 201-205
[3]  
Moon F.C.(1985)Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential Phys. Rev. Lett. 55 1439-1442
[4]  
Li G.X.(1992)Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems Automatica 28 531-548
[5]  
Genesio R.(1976)An equation for continuous chaos Phys. Lett. A 57 397-398
[6]  
Tesi A.(1996)Chua’s equation with cubic nonlinearity Int. J. Bifurc. Chaos Appl. Sci. Eng. 6 2175-2222
[7]  
Rössler O.E.(1990)Synchronization in chaotic systems Phys. Rev. Lett. 64 821-824
[8]  
Huang A.(2006)Synchronization of Genesio chaotic system via backstepping approach Chaos Solitons Fractals 27 1369-1375
[9]  
Pivka L.(2003)Synchronizing chaotic systems using backstepping design Chaos Solitons Fractals 16 37-45
[10]  
Wu C.W.(2000)Adaptive backstepping control of a class of chaotic systems Int. J. Bifurc. Chaos Appl. Sci. Eng. 10 1149-1156