Semi-online scheduling with known maximum job size on two uniform machines

被引:0
作者
Qian Cao
Zhaohui Liu
机构
[1] East China University of Science and Technology,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2010年 / 20卷
关键词
Scheduling; Uniform machines; Semi-online;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the semi-online scheduling problem with known maximum job size on two uniform machines with the speed ratio s≥1. The objective is to minimize the makespan. Two algorithms are presented, where the first is optimal for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq s\leq\sqrt{2}$\end{document} , and the second is optimal for 1.559≤s≤2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\ge \frac{3+\sqrt{17}}{2}$\end{document} . In addition, the improvement on lower bounds is made for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2<s<\frac{3+\sqrt{17}}{2}$\end{document} .
引用
收藏
页码:369 / 384
页数:15
相关论文
共 30 条
  • [1] Burkard RE(1998)A linear compound algorithm for uniform machine scheduling Computing 61 1-9
  • [2] He Y(1980)Bounds for list schedules on uniform processors SIAM J Comput 9 91-103
  • [3] Kellerer H(2005)Optimal non-preemptive semi-online scheduling on two related machines J Algorithms 57 49-73
  • [4] Cho Y(2007)Semi-online scheduling with “end of sequence” information J Comb Optim 14 45-61
  • [5] Sahni S(2001)Randomized on-line scheduling on two uniform machines J Sched 4 71-92
  • [6] Epstein L(1977)Bounds for LPT schedules on uniform processors SIAM J Comput 6 155-166
  • [7] Favrholdt LM(1976)Exact and approximate algorithms for scheduling nonidentical processors J ACM 23 317-327
  • [8] Epstein L(2006)Semi on-line scheduling problem with the largest processing time of jobs on two uniform machines known J Syst Sci Math Sci 26 729-736
  • [9] Ye D(1997)A parametric worst case analysis of the LPT heuristic for two uniform machines Oper Res 45 116-125
  • [10] Epstein L(2008)Two semi-online scheduling problems on two uniform machines Theor Comput Sci 21 53-57