Numerical modeling of entropy production in Al2O3/H2O nanofluid flowing through a novel Bessel-like converging pipe

被引:0
|
作者
Olatomide Gbenga Fadodun
Adebimpe Amos Amosun
David Oluwatosin Olaloye
机构
[1] Obafemi Awolowo University,Centre for Energy Research and Development
[2] Obafemi Awolowo University,Department of Physics
来源
关键词
Entropy; Convergent index; Reynolds number; Nanofluid; Effectiveness number; RSM;
D O I
暂无
中图分类号
学科分类号
摘要
Optimization of thermal systems requires higher heat transfer rate and lower entropy production rate. The review of literature shows that there are limited works on entropy production rate of nanofluids flowing through a converging pipe as the available ones only considered entropy production rate in a linear converging pipe. In this study, a 2D-computational fluid dynamic model is set up to investigate entropy production rate of Al2O3 nanofluid flowing through novel Bessel-like convergent pipes in laminar flow regime. The effect of Reynolds number 300≤Re≤1200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {300 \le {\text{Re}} \le 1200} \right)$$\end{document}, nanoparticle concentration 0≤φ≤0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {0 \le \varphi \le 0.1} \right)$$\end{document}, and convergent index n=0-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {n = 0 - 3} \right)$$\end{document} on the entropy production rate, heat transfer effectiveness number, and irreversibility distribution ratio were considered. The results obtained revealed that increase in convergent index enhances viscous entropy production rate, but diminishes thermal entropy production rate. For instance, the reduction in thermal entropy production rate at Re=900\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Re}} = 900$$\end{document} between pipe corresponds to n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 0$$\end{document} and n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 3$$\end{document} was 51.98% while the increase in viscous entropy production rate was 753.65%. Furthermore, a new correlation was developed using response surface methodology to estimate the entropy production rate as a function of the Reynolds number, nanoparticle concentration, and convergence index. The overall result shows that the usage of converging pipe in place of straight pipe is more advantageous.
引用
收藏
页码:159 / 178
页数:19
相关论文
共 50 条
  • [31] Investigation of turbulent entropy production rate with SWCNT/H2O nanofluid flowing in various inwardly corrugated pipes
    Fadodun, Olatomide Gbenga
    Ewim, Daniel Raphael Ejike
    Abolarin, Sogo Mayokun
    HEAT TRANSFER, 2022, 51 (08) : 7862 - 7889
  • [32] Numerical investigation of fluid flow and heat transfer characteristics of MWCNT-Al2O3/H2O hybrid nanofluid flowing through a novel semi-arc ribbed square duct
    Kalsi, Sujata
    Kumar, Sunil
    Kumar, Anil
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024,
  • [33] Regression analysis for thermal properties of Al2O3/H2O nanofluid using machine learning techniques
    Kumar, P. C. Mukesh
    Kavitha, R.
    HELIYON, 2020, 6 (06)
  • [34] Thermal investigation and physiochemical interaction of H2O and C2H6O2 saturated by Al2O3 and γAl2O3 nanomaterials
    M. Alharbi, Khalid Abdulkhaliq
    Adnan
    Journal of Applied Biomaterials and Functional Materials, 2022, 20
  • [35] Thermal investigation and physiochemical interaction of H2O and C2H6O2 saturated by Al2O3 and ?Al2O3 nanomaterials
    Alharbi, Khalid Abdulkhaliq M.
    Adnan
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2022, 20
  • [36] A theoretical investigation of unsteady thermally stratified flow of γAl2O3 - H2O and γAl2O3 - C2H6O2 nanofluids through a thin slit
    Ahmed, Naveed
    Adnan
    Khan, Umar
    Mohyud-Din, Syed Tauseef
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2018, 119 : 296 - 308
  • [37] Transparent capacitors based on nanolaminate Al2O3/TiO2/Al2O3 with H2O and O3 as oxidizers
    Zhang, G. Z.
    Wu, H.
    Chen, C.
    Wang, T.
    Wang, P. Y.
    Mai, L. Q.
    Yue, J.
    Liu, C.
    APPLIED PHYSICS LETTERS, 2014, 104 (16)
  • [38] Effect of heat and mass transfer on the MHD Al2O3/H2O and Al2O3/C2H6O2 nanoliquid through an asymmetric vertical channel
    Kumar, P. Praveen
    Balakrishnan, S.
    Magesh, A.
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (03):
  • [39] Effect of H2O on the Adsorption of SO2 and NO on γ-Al2O3
    Hua, Tengyun
    Zhang, Chenxin
    Wu, Chuanpeng
    Guo, Dawei
    Mao, Anguo
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35 (06): : 1107 - 1114
  • [40] Numerical modeling of heat transfer performance and optimization of car radiator using (H2O/Al2O3) nanofluids as coolant
    Oyedepo, S. O.
    Ezeuduji, D.
    Araoyinbo, A. O.
    Kilanko, O.
    Efewikekwe, U. K.
    Dirisu, J. O.
    Aworinde, A. K.
    Babalola, P. O.
    Leramo, R. O.
    Ahmed, Mohamed
    Saleh, B.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2022, 82 (05) : 185 - 198