Directional Differentiability of the Metric Projection Operator in Uniformly Convex and Uniformly Smooth Banach Spaces

被引:0
作者
Jinlu Li
机构
[1] Shawnee State University,Department of Mathematics
来源
Journal of Optimization Theory and Applications | 2024年 / 200卷
关键词
Uniformly convex and uniformly smooth Banach space; Metric projection operator; Directional differentiability of the metric projection; Directional derivative of the metric projection; 49J50; 26A24; 47A58; 47J30; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a real uniformly convex and uniformly smooth Banach space and C a nonempty closed and convex subset of X. Let PC: X → C denote the (standard) metric projection operator. In this paper, we define the Ga^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{a}$$\end{document}teaux directional differentiability of PC. We investigate some properties of the Ga^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{a}$$\end{document}teaux directional differentiability of PC. In particular, if C is a closed ball or a closed and convex cone (including proper closed subspaces), then, we give the exact representations of the directional derivatives of PC.
引用
收藏
页码:923 / 950
页数:27
相关论文
共 18 条
  • [1] Alber Y(1988)Parallelogram inequalities in Banach spaces and some properties of the duality mapping Ukranian Math. J. 40 650-652
  • [2] Notik AL(1976)Differentiability of Lipschitz mappings between Banach spaces Studia Math. 1 147-190
  • [3] Aronszajn N(1994)Second order differentiability of convex functions on Banach spaces Trans. Am. Math. Soc.Soc 342 43-81
  • [4] Borwein JM(1982)Differentiability of the metric projection in Hilbert space Trans. Am. Math. Soc.Soc 270 483-501
  • [5] Noll D(1977)How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities J. Math. Soc. Jpn. 29 615-631
  • [6] Fitzpatrick S(1973)Smoothness of certain metric projections on Hilbert space Trans. Am. Math. Soc.Soc 184 87-100
  • [7] Phelps RR(1985)Differentiability with respect to parameters of solutions to convex programming problems Math. Program. 33 352-365
  • [8] Haraux A(1976)Contrόle dans les inequations variationelles elliptiques J. Funct. Anal.Funct. Anal. 22 130-185
  • [9] Holmes RB(1994)Graphical methods in first and second order differentiability theory of integral functional J. Set-Valued Anal. 2 241-258
  • [10] Malanowski K(1967)Projection methods in nonlinear numerical functional analysis J. Math. Mech. 17 353-372