Approximation algorithms for connected facility location problems

被引:0
|
作者
Mohammad Khairul Hasan
Hyunwoo Jung
Kyung-Yong Chwa
机构
[1] Korea Advanced Institute of Science and Technology,Division of Computer Science
来源
Journal of Combinatorial Optimization | 2008年 / 16卷
关键词
Approximation algorithms; Integer programming; LP-rounding; Connected facility location; Steiner tree;
D O I
暂无
中图分类号
学科分类号
摘要
We study Connected Facility Location problems. We are given a connected graph G=(V,E) with nonnegative edge cost ce for each edge e∈E, a set of clients D⊆V such that each client j∈D has positive demand dj and a set of facilities F⊆V each has nonnegative opening cost fi and capacity to serve all client demands. The objective is to open a subset of facilities, say \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat{F}$\end{document} , to assign each client j∈D to exactly one open facility i(j) and to connect all open facilities by a Steiner tree T such that the cost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i\in \hat{F}}f_{i}+\sum_{j\in D}d_{j}c_{i(j)j}+M\sum_{e\in T}c_{e}$\end{document} is minimized for a given input parameter M≥1. We propose a LP-rounding based 8.29 approximation algorithm which improves the previous bound 8.55 (Swamy and Kumar in Algorithmica, 40:245–269, 2004). We also consider the problem when opening cost of all facilities are equal. In this case we give a 7.0 approximation algorithm.
引用
收藏
页码:155 / 172
页数:17
相关论文
共 50 条
  • [1] Approximation algorithms for connected facility location problems
    Hasan, Mohammad Khairul
    Jung, Hyunwoo
    Chwa, Kyung-Yong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (02) : 155 - 172
  • [2] Primal–Dual Algorithms for Connected Facility Location Problems
    Chaitanya Swamy
    Amit Kumar
    Algorithmica , 2004, 40 : 245 - 269
  • [3] Combinatorial approximation algorithms for buy-at-bulk connected facility location problems
    Bley, Andreas
    Rezapour, Mohsen
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 34 - 46
  • [4] Approximation Algorithms for Bounded Facility Location Problems
    Piotr Krysta
    Roberto Solis-Oba
    Journal of Combinatorial Optimization, 2001, 5 : 233 - 247
  • [5] APPROXIMATION ALGORITHMS FOR MULTICOMMODITY FACILITY LOCATION PROBLEMS
    Ravi, R.
    Sinha, Amitabh
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 538 - 551
  • [6] Approximation algorithms for bounded facility location problems
    Krysta, P
    Solis-Oba, R
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (02) : 233 - 247
  • [7] Primal-dual algorithms for connected facility location problems
    Swamy, C
    Kumar, A
    ALGORITHMICA, 2004, 40 (04) : 245 - 269
  • [8] Parallel Approximation Algorithms for Facility-Location Problems
    Blelloch, Guy E.
    Tangwongsan, Kanat
    SPAA '10: PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2010, : 315 - 324
  • [9] Improved Approximation Algorithms for the Facility Location Problems with Linear/Submodular Penalties
    Li, Yu
    Du, Donglei
    Xiu, Naihua
    Xu, Dachuan
    ALGORITHMICA, 2015, 73 (02) : 460 - 482
  • [10] Improved Approximation Algorithms for the Facility Location Problems with Linear/Submodular Penalties
    Yu Li
    Donglei Du
    Naihua Xiu
    Dachuan Xu
    Algorithmica, 2015, 73 : 460 - 482