Gauge-stringy instantons in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 U(N) gauge theories

被引:0
作者
Hossein Ghorbani
机构
[1] School of Particles and Accelerators,
[2] Institute for Research in Fundamental Sciences (IPM),undefined
关键词
Brane Dynamics in Gauge Theories; Solitons Monopoles and Instantons; Supersymmetric gauge theory;
D O I
10.1007/JHEP12(2013)041
中图分类号
学科分类号
摘要
Using D3/D(−1) brane set-up in type IIB string theory we introduce gaugestringy instantons in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 U(N ) supersymmetry theories with one matter multiplet in symmetric representation. In addition to the gauge and stringy moduli there exist extra zero modes that we refer to as “gauge-stringy” moduli. We show that the measure of the moduli space in this model becomes dimensionless for arbitary N when the gauge instanton charge kg is equal to the stringy instanton charge ks. This property of gauge-stringy instantons leads to having equal contributions from all instanton charges ks = kg ≡ k in the effective action. We derive the gauge-stringy instanton partition function and calculate the corrections to the prepotential due to k = 1, 2 gauge-stringy instanton charges. As a by-product the partition function for gauge k-instanton is obtained which coincides with the result from the standard ADHM construction.
引用
收藏
相关论文
共 53 条
[1]  
Nekrasov NA(2004)Seiberg-Witten prepotential from instanton counting Adv. Theor. Math. Phys. 7 831-undefined
[2]  
Ghorbani H(2011)Stringy instantons in SU(N) N = 2 non-conformal gauge theories JHEP 12 070-undefined
[3]  
Musso D(2011)Stringy instanton effects in N = 2 gauge theories JHEP 03 052-undefined
[4]  
Ghorbani H(2003)Classical gauge instantons from open strings JHEP 02 045-undefined
[5]  
Musso D(2002)The calculus of many instantons Phys. Rept. 371 231-undefined
[6]  
Lerda A(2008)Instantons and supersymmetry Lect. Notes Phys. 737 303-undefined
[7]  
Billó M(2007)Stringy instantons at orbifold singularities JHEP 06 067-undefined
[8]  
Dorey N(2007)Stringy instantons and quiver gauge theories JHEP 05 024-undefined
[9]  
Hollowood TJ(2006)Fractional branes and dynamical supersymmetry breaking JHEP 01 011-undefined
[10]  
Khoze VV(1998)Fractional branes and wrapped branes JHEP 02 013-undefined