Some New Characterizations of Weights in Dynamic Inequalities Involving Monotonic Functions

被引:0
作者
Samir H. Saker
Ahmed I. Saied
Douglas R. Anderson
机构
[1] Galala University,Department of Mathematics, Faculty of Science
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] Benha University,Department of Mathematics, Faculty of Science
[4] Concordia College,Department of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2021年 / 20卷
关键词
Hardy’s type inequality; Monotonic functions; Time scales; Weighted functions; Inequalities; 26D10; 26D15; 34N05; 47B38; 39A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove some new characterizations of weighted functions for dynamic inequalities of Hardy’s type involving monotonic functions on a time scale T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} in different spaces Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(\mathbb {T})$$\end{document} and Lq(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}( \mathbb {T})$$\end{document} when 0<p<q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<q<\infty $$\end{document} and p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\le 1$$\end{document}. The main results will be proved by employing the reverse Hölder inequality, integration by parts, and the Fubini theorem on time scales. The main contribution in this paper is the new proof in the case when p<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<1$$\end{document}, which has not been considered before on time scales. Moreover, the results unify and extend continuous and discrete systems under one theory.
引用
收藏
相关论文
共 21 条
[1]  
Hardy GH(1920)Note on a theorem of Hilbert Math. Z. 6 314-317
[2]  
Hardy GH(1925)Notes on some points in the integral calculus (LX). An inequality between integrals Messenger Math. 54 150-156
[3]  
Copson ET(1928)Note on series of positive terms J. Lond. Math. Soc. 1 49-51
[4]  
Hardy GH(1928)Notes on some points in the integral calculus (LXIV) Messenger Math. 57 12-16
[5]  
Heinig HP(1985)Weighted norm inequalities for certain integral operators II Proc. Am. Math. Soc. 95 387-395
[6]  
Heinig HP(1995)Weighted inequalities for monotone and concave functions Stud. Math. 116 133-165
[7]  
Maligranda L(1970)Generalization of inequalities of Hardy and Littlewood Acta Sci. Math. (Szeged) 31 285-297
[8]  
Leindler L(1991)Weighted Hardy and Opial-type inequalities J. Math. Anal. Appl. 160 434-445
[9]  
Sinnamon GJ(1991)Boundedness of linear integral operators on a class of monotone functions Siber. Math. J. 32 540-542
[10]  
Stepanov VD(2006)Weighted Hardy inequalities for decreasing sequences and functions Math. Ann. 334 489-531