Tighter generalized monogamy and polygamy relations for multiqubit systems

被引:0
作者
Zhi-Xiang Jin
Shao-Ming Fei
机构
[1] Capital Normal University,School of Mathematical Sciences
[2] University of Chinese Academy of Sciences,School of Physics
[3] Max-Planck-Institute for Mathematics in the Sciences,undefined
来源
Quantum Information Processing | 2020年 / 19卷
关键词
Entanglement monogamy; Entanglement polygamy; Concurrence; Convex-roof extended negativity;
D O I
暂无
中图分类号
学科分类号
摘要
We present a different kind of monogamy and polygamy relations based on concurrence and concurrence of assistance for multiqubit systems. By relabeling the subsystems associated with different weights, a smaller upper bound of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}th (0≤α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha \le 2$$\end{document}) power of concurrence for multiqubit states is obtained. We also present tighter monogamy relations satisfied by the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}th (0≤α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha \le 2$$\end{document}) power of concurrence for N-qubit pure states under the partition AB and C1⋯CN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_1 \cdots C_{N-2}$$\end{document}, as well as under the partition ABC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ABC_1$$\end{document} and C2⋯CN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2\cdots C_{N-2}$$\end{document}. These inequalities give rise to the restrictions on entanglement distribution and the trade-off of entanglement among the subsystems. Similar results are also derived for negativity.
引用
收藏
相关论文
共 38 条
[21]   Monogamy and Polygamy of Entanglement in Multipartite Quantum Systems [J].
Sanders, Barry C. ;
Kim, Jeong San .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2010, 4 (03) :281-288
[22]   Tighter Monogamy Constraints in Multi-Qubit Entanglement Systems [J].
Liang, Yanying ;
Zhu, Chuan-Jie ;
Zheng, Zhu-Jun .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (04) :1291-1305
[23]   Tighter Monogamy Constraints in Multi-Qubit Entanglement Systems [J].
Yanying Liang ;
Chuan-Jie Zhu ;
Zhu-Jun Zheng .
International Journal of Theoretical Physics, 2020, 59 :1291-1305
[24]   Optimized generalized monogamy relations and upper bounds for N-qubit systems [J].
Shen, Zhong-Xi ;
Xuan, Dong-Ping ;
Zhou, Wen ;
Wang, Zhi-Xi ;
Fei, Shao-Ming .
LASER PHYSICS LETTERS, 2024, 21 (10)
[25]   Monogamy relations of concurrence for any dimensional quantum systems [J].
Xue-Na Zhu ;
Xianqing Li-Jost ;
Shao-Ming Fei .
Quantum Information Processing, 2017, 16
[26]   Monogamy relations of concurrence for any dimensional quantum systems [J].
Zhu, Xue-Na ;
Li-Jost, Xianqing ;
Fei, Shao-Ming .
QUANTUM INFORMATION PROCESSING, 2017, 16 (11)
[27]   Monogamy relations in tripartite quantum system [J].
李姣姣 ;
王志玺 .
Chinese Physics B, 2010, (10) :98-103
[28]   Monogamy relations in tripartite quantum system [J].
Li Jiao-Jiao ;
Wang Zhi-Xi .
CHINESE PHYSICS B, 2010, 19 (10)
[29]   Polygamy Inequalities for Qubit Systems [J].
Zhu, Xue-Na ;
Jin, Zhi-Xiang ;
Fei, Shao-Ming .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (08) :2488-2496
[30]   Polygamy Inequalities for Qubit Systems [J].
Xue-Na Zhu ;
Zhi-Xiang Jin ;
Shao-Ming Fei .
International Journal of Theoretical Physics, 2019, 58 :2488-2496