Tighter generalized monogamy and polygamy relations for multiqubit systems

被引:0
|
作者
Zhi-Xiang Jin
Shao-Ming Fei
机构
[1] Capital Normal University,School of Mathematical Sciences
[2] University of Chinese Academy of Sciences,School of Physics
[3] Max-Planck-Institute for Mathematics in the Sciences,undefined
来源
Quantum Information Processing | 2020年 / 19卷
关键词
Entanglement monogamy; Entanglement polygamy; Concurrence; Convex-roof extended negativity;
D O I
暂无
中图分类号
学科分类号
摘要
We present a different kind of monogamy and polygamy relations based on concurrence and concurrence of assistance for multiqubit systems. By relabeling the subsystems associated with different weights, a smaller upper bound of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}th (0≤α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha \le 2$$\end{document}) power of concurrence for multiqubit states is obtained. We also present tighter monogamy relations satisfied by the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}th (0≤α≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha \le 2$$\end{document}) power of concurrence for N-qubit pure states under the partition AB and C1⋯CN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_1 \cdots C_{N-2}$$\end{document}, as well as under the partition ABC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ABC_1$$\end{document} and C2⋯CN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2\cdots C_{N-2}$$\end{document}. These inequalities give rise to the restrictions on entanglement distribution and the trade-off of entanglement among the subsystems. Similar results are also derived for negativity.
引用
收藏
相关论文
共 50 条
  • [1] Tighter generalized monogamy and polygamy relations for multiqubit systems
    Jin, Zhi-Xiang
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [2] Tighter monogamy and polygamy relations in multiqubit systems
    Zhang, Zhaonan
    Luo, Yu
    Li, Yongming
    EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (01):
  • [3] Tighter monogamy and polygamy relations in multiqubit systems
    Zhaonan Zhang
    Yu Luo
    Yongming Li
    The European Physical Journal D, 2019, 73
  • [4] Tighter monogamy relations in multiqubit systems
    Jin, Zhi-Xiang
    Li, Jun
    Li, Tao
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [5] Tighter Bounds of Generalized Monogamy and Polygamy Relations
    Cao, Yue
    Jing, Naihuan
    Wang, Yiling
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (11)
  • [6] Tighter Monogamy Relations for Concurrence and Negativity in Multiqubit Systems
    Tao, Yuan-Hong
    Zheng, Kai
    Jin, Zhi-Xiang
    Fei, Shao-Ming
    MATHEMATICS, 2023, 11 (05)
  • [7] Tighter monogamy and polygamy relations of multiparty quantum entanglement
    Gao, Limin
    Yan, Fengli
    Gao, Ting
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [8] Tighter monogamy and polygamy relations of multiparty quantum entanglement
    Limin Gao
    Fengli Yan
    Ting Gao
    Quantum Information Processing, 2020, 19
  • [9] Tighter monogamy and polygamy relations for a superposition of the generalized W-class state and vacuum
    Lai, Le-Min
    Fei, Shao-Ming
    Wang, Zhi-Xi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (42)
  • [10] Monogamy and polygamy relations of multiqubit entanglement based on unified entropy
    靳志祥
    乔从丰
    Chinese Physics B, 2020, 29 (02) : 153 - 160