Construction of invariant solutions and conservation laws to the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document}-dimensional integrable coupling of the KdV equation

被引:0
作者
Ben Gao
Qinglian Yin
机构
[1] Taiyuan University of Technology,College of Mathematics
关键词
The ; -dimensional integrable coupling of the KdV equation; Lie group of symmetry; Optimal system; Tanh method; Conservation laws;
D O I
10.1186/s13661-020-01466-6
中图分类号
学科分类号
摘要
Under investigation in this paper is the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document}-dimensional integrable coupling of the KdV equation which has applications in wave propagation on the surface of shallow water. Firstly, based on the Lie symmetry method, infinitesimal generators and an optimal system of the obtained symmetries are presented. At the same time, new analytical exact solutions are computed through the tanh method. In addition, based on Ibragimov’s approach, conservation laws are established. In the end, the objective figures of the solutions of the coupling of the KdV equation are performed.
引用
收藏
相关论文
共 45 条
[1]  
Mancas S.C.(2019)Dissipative periodic and chaotic patterns to the KdV–Burgers and Gardner equations Chaos Solitons Fractals 126 385-393
[2]  
Adams R.(2019)On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation J. Math. Anal. Appl. 479 688-702
[3]  
Carvajal X.(2019)A conservative fourth-order stable finite difference scheme for the generalized Rosenau–KdV equation in both 1D and 2D J. Comput. Appl. Math. 355 310-331
[4]  
Panthee M.(2019)The design of conservative finite element discretisations for the vectorial modified KdV equation Appl. Numer. Math. 137 230-251
[5]  
Wang X.F.(2019)Construction of two parametric deformation of KdV-hierarchy and solution in terms of meromorphic functions on the sigma divisor of a hyperelliptic curve of genus 3 SIGMA 15 2943-2961
[6]  
Dai W.Z.(2019)State transition of lump-type waves for the Nonlinear Dyn. 95 49-55
[7]  
Jackaman J.(1996)-dimensional generalized KdV equation Phys. Lett. A 213 412-459
[8]  
Papamikos G.(1976)The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy SIAM Rev. 18 4950-4962
[9]  
Pryer T.(2002)The Korteweg–deVries equation: a survey of results J. Math. Phys. 43 230-233
[10]  
Ayano T.(1998)A nonconfocal involutive system and constrained flows associated with the MKdV-equation J. Nonlinear Math. Phys. 5 567-574