Finite sets and infinite sets in weak intuitionistic arithmetic
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Takako Nemoto
机构:
[1] Japan Advanced Institute of Science and Technology,School of Information Science
来源:
Archive for Mathematical Logic
|
2020年
/
59卷
关键词:
Constructive mathematics;
Constructive reverse mathematics;
First order arithmetic;
Induction principles;
Non-constructive principles;
03F50;
03F30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we consider, for a set A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {A}$$\end{document} of natural numbers, the following notions of finitenessThere are a natural number l and a bijection f between {x∈N:x<l}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{ x\in \mathbb {N}:x<l\}$$\end{document} and A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {A}$$\end{document};There is an upper bound for A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {A}$$\end{document};There is l such that ∀B⊆A(|B|<l)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\forall \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|<l)$$\end{document};It is not the case that ∀y(∃x>y)(x∈A)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\forall y(\exists x>y)(x\in \mathcal {A})$$\end{document};It is not the case that ∀l∃B⊆A(|B|=l)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\forall l\exists \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|=l)$$\end{document}, and infinitenessThere are not a natural number l and a bijection f between {x∈N:x<l}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{ x\in \mathbb {N}:x<l\}$$\end{document} and A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {A}$$\end{document};There is no upper bound for A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {A}$$\end{document};There is no l such that ∀B⊆A(|B|<l)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\forall \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|<l)$$\end{document};∀y(∃x>y)(x∈A)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\forall y(\exists x>y)(x\in \mathcal {A})$$\end{document};∀l∃B⊆A(|B|=l)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\forall l\exists \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|=l)$$\end{document}. In this paper, we systematically compare them in the method of constructive reverse mathematics. We show that the equivalence among them can be characterized by various combinations of induction axioms and non-constructive principles, including the axiom of bounded comprehension.