Khovanov homology and the slice genus

被引:0
作者
Jacob Rasmussen
机构
[1] Princeton University,Dept. of Mathematics
[2] University of Cambridge,DPMMS
来源
Inventiones mathematicae | 2010年 / 182卷
关键词
Spectral Sequence; Short Exact Sequence; Jones Polynomial; Planar Diagram; Floer Homology;
D O I
暂无
中图分类号
学科分类号
摘要
We use Lee’s work on the Khovanov homology to define a knot invariant s. We show that s(K) is a concordance invariant and that it provides a lower bound for the smooth slice genus of K. As a corollary, we give a purely combinatorial proof of the Milnor conjecture.
引用
收藏
页码:419 / 447
页数:28
相关论文
共 12 条
[1]  
Bar-Natan D.(2002)On Khovanov’s categorification of the Jones polynomial Algebr. Geom. Topol. 2 337-370
[2]  
Carter J.S.(1993)Reidemeister moves for surface isotopies and their interpretation as moves to movies J. Knot Theory Ramif. 2 251-284
[3]  
Saito M.(1982)A surgery sequence in dimension four; the relations with knot concordance Invent. Math. 68 195-226
[4]  
Freedman M.(2000)A categorification of the Jones polynomial Duke Math. J. 101 359-426
[5]  
Khovanov M.(1993)Gauge theory for embedded surfaces. I Topology 32 773-826
[6]  
Kronheimer P.B.(2002)Heegaard Floer homology and alternating knots Geom. Topol. 7 225-254
[7]  
Mrowka T.S.(2003)Knot Floer homology and the four-ball genus Geom. Topol. 7 615-639
[8]  
Ozsváth P.(1999)Positive links are strongly quasipositive Geom. Topol. Monogr. 2 555-562
[9]  
Szabó Z.(undefined)undefined undefined undefined undefined-undefined
[10]  
Ozsváth P.(undefined)undefined undefined undefined undefined-undefined