Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces

被引:0
作者
Andrew J. Blumberg
Itamar Gal
Michael A. Mandell
Matthew Pancia
机构
[1] University of Texas at Austin,Department of Mathematics
[2] Indiana University,Department of Mathematics
来源
Foundations of Computational Mathematics | 2014年 / 14卷
关键词
Persistent homology; Stability; Robustness; Barcode space; Bottleneck metric; Gromov–Prohorov metric ; Hypothesis testing; Confidence interval; Metric measure space; 55U10; 68U05;
D O I
暂无
中图分类号
学科分类号
摘要
We study distributions of persistent homology barcodes associated to taking subsamples of a fixed size from metric measure spaces. We show that such distributions provide robust invariants of metric measure spaces and illustrate their use in hypothesis testing and providing confidence intervals for topological data analysis.
引用
收藏
页码:745 / 789
页数:44
相关论文
共 56 条
[21]  
Chazal F(2006)Toward computing homology from finite approximations Acta Math. 196 65-131
[22]  
Cohen-Steiner D(2002)On the geometry of metric measure spaces J. Nonparamet. Stat. 14 665-673
[23]  
Merigot Q(1998)A nonparametric confidence interval for the trimmed mean Proc. R. Soc. Lond. B 265 359-366
[24]  
Cohen-Steiner D(2005)Independent component filters of natural images compared with simple cells in primary visual cortex Discret Comput. Geom. 33 249-274
[25]  
Edelsbrunner H(undefined)Computing persistent homology undefined undefined undefined-undefined
[26]  
Harer J(undefined)undefined undefined undefined undefined-undefined
[27]  
Cohen-Steiner D(undefined)undefined undefined undefined undefined-undefined
[28]  
Edelsbrunner H(undefined)undefined undefined undefined undefined-undefined
[29]  
Harer J(undefined)undefined undefined undefined undefined-undefined
[30]  
Mileyko Y(undefined)undefined undefined undefined undefined-undefined