Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces

被引:0
作者
Andrew J. Blumberg
Itamar Gal
Michael A. Mandell
Matthew Pancia
机构
[1] University of Texas at Austin,Department of Mathematics
[2] Indiana University,Department of Mathematics
来源
Foundations of Computational Mathematics | 2014年 / 14卷
关键词
Persistent homology; Stability; Robustness; Barcode space; Bottleneck metric; Gromov–Prohorov metric ; Hypothesis testing; Confidence interval; Metric measure space; 55U10; 68U05;
D O I
暂无
中图分类号
学科分类号
摘要
We study distributions of persistent homology barcodes associated to taking subsamples of a fixed size from metric measure spaces. We show that such distributions provide robust invariants of metric measure spaces and illustrate their use in hypothesis testing and providing confidence intervals for topological data analysis.
引用
收藏
页码:745 / 789
页数:44
相关论文
共 56 条
[1]  
Cagliari F(2001)Size functions from the categorical viewpoint Acta Appl. Math. 67 225-235
[2]  
Ferri M(2011)Deconvolution for the Wasserstein metric and geometric inference Electron. J. Stat. 5 1394-1423
[3]  
Pozzi P(2010)Zigzag persistence Found. Comput. Math. 10 367-405
[4]  
Caillerie C(2009)Characterization, stability, and convergence of hierarchical clustering methods J. Mach. Learn. Res. 11 1425-1470
[5]  
Chazal F(2008)On the local behavior of spaces of natural images Int. J. Comput. Vis. 76 1-12
[6]  
Dedecker J(2009)Gromov-Hausdorff stable signatures for shapes using persistence Comput. Graph. Forum 28 1393-1403
[7]  
Michel B(2011)Geometric inference for probability measures Found. Comput. Math. 11 733-751
[8]  
Carlsson G(2007)Stability of persistence diagrams Discret Comput. Geom. 37 103-120
[9]  
De Silva V(2010)Lipschitz functions have Found. Comput. Math. 10 127-139
[10]  
Carlsson G(2002)-stable persistence Discret Comput. Geom. 28 511-533