On the Chromatic Numbers of Rational Spaces

被引:0
作者
A. A. Sokolov
机构
[1] Lomonosov Moscow State University,
来源
Mathematical Notes | 2018年 / 103卷
关键词
chromatic number; rational space; unit distance graph;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the notion of affine chromatic number of a rational space introduced by E. I. Ponomarenko and A. M. Raigorodskii and describe its relationship with chromatic numbers of rational spaces.
引用
收藏
页码:111 / 117
页数:6
相关论文
共 46 条
  • [1] Hadwiger H.(1944)Ein Überdeckungssatz für den Euklidischen Raum PortugaliaeMath. 4 140-144
  • [2] Nechushtan O.(2002)Note on the space chromatic number DiscreteMath. 256 499-507
  • [3] Coulson D.(2002)A 15-Coloring of 3-Space omitting distance one DiscreteMath. 256 83-90
  • [4] Raigorodskii A. M.(2000)On the chromatic number of a space Uspekhi Mat. Nauk 55 147-148
  • [5] Larman D. G.(1972)The realization of distances within sets in Euclidean space Mathematika 19 1-24
  • [6] Rogers C. A.(2000)Colorings of metric spaces Geombinatorics 9 113-126
  • [7] Benda M.(1973)Distances realized by sets covering the plane J. Combinatorial Theory Ser. A 14 187-200
  • [8] Perles M.(2013)New estimates in the problem of the number of edges in a hypergraph with forbidden intersections Problemy Peredachi Informatsii 49 98-104
  • [9] Woodall D. R.(2015)New lower bound for the chromatic number of a rational space with one and two forbidden distances Mat. Zametki 97 255-261
  • [10] Ponomarenko E. I.(2007)B1(Q3) = 4 Geombinatorics 16 356-362