On Singular Operators in Vanishing Generalized Variable-Exponent Morrey Spaces and Applications to Bergman-Type Spaces

被引:0
作者
A. N. Karapetyants
H. Rafeiro
S. G. Samko
机构
[1] Southern Federal University,Department of Mathematical Sciences, College of Sciences
[2] State University of New York,undefined
[3] United Arab Emirates University,undefined
[4] University of Algarve,undefined
来源
Mathematical Notes | 2019年 / 106卷
关键词
singular operator; Morrey space; Bergman-type space; Calderon-Zygmund operator;
D O I
暂无
中图分类号
学科分类号
摘要
We give a proof of the boundedness of the Bergman projection in generalized variable-exponent vanishing Morrey spaces over the unit disc and the upper half-plane. To this end, we prove the boundedness of the Calderón—Zygmund operators on generalized variable-exponent vanishing Morrey spaces. We give the proof of the latter in the general context of real functions on Rn, since it is new in such a setting and is of independent interest. We also study the approximation by mollified dilations and estimate the growth of functions near the boundary.
引用
收藏
页码:727 / 739
页数:12
相关论文
共 41 条
  • [1] Aleman A(2016)Sarason conjecture on the Bergman space Int. Mathematics. Research. Notices 14 4320-4349
  • [2] Pott S(1978)Inegalites a poids pour le noyau de Bergman CR Acad. Sci. Paris Ser. AB286 775-778
  • [3] Reguera M C(2009)Boundedness of the Bergman projections on Publications de l’Institut Mathematique 86 5-20
  • [4] Bekolle D(2013) spaces with radial weights J. Math. Sci. 193 228-248
  • [5] Bonami A(2013)Maximal, potential, and singular operators in the generalized variable-exponent Morrey spaces on unbounded sets J. Global Optim. 57 1385-1399
  • [6] Milutin D(2017)Maximal, potential, and singular operators in vanishing generalized Morrey spaces J. Math. Sci. 226 344-354
  • [7] Guliyev V S(2017)On Boundedness of Bergman Projection Operators in Banach Spaces of Holomorphic Functions in Half-Plane and Harmonic Functions in Half-Space J. Funct. Anal. 272 2392-2411
  • [8] Samko S G(1964)Approximation in Morrey spaces Hlp Uspekhi Mat. Nauk 19 139-142
  • [9] Samko N(2010)The general form of a linear functional Math. Scand. 107 285-304
  • [10] Karapetyants A(2003)Boundedness of the maximal, potential and singular operators in the generalized variable-exponent Morrey spaces J. Reine Angew. Math. 563 197-220