Bounded Point Derivations and Functions of Bounded Mean Oscillation

被引:0
作者
Stephen Deterding
机构
[1] West Liberty University,
来源
Computational Methods and Function Theory | 2021年 / 21卷
关键词
Point derivation; BMO; VMO; Analytic function; 30H35; 30H99;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact subset of the complex plane with the property that every relatively open subset of X has positive area and let A0(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_0(X)$$\end{document} denote the space of VMO functions that are analytic on X. A0(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_0(X)$$\end{document} is said to admit a bounded point derivation of order t at a point x0∈∂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 \in \partial X$$\end{document} if there exists a constant C such that |f(t)(x0)|≤C‖f‖BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f^{(t)}(x_0)|\le C \Vert f\Vert _{{\text {BMO}}}$$\end{document} for all functions in VMO(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {VMO}}(X)$$\end{document} that are analytic on X. In this paper, we give necessary and sufficient conditions in terms of lower 1-dimensional Hausdorff content for A0(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_0(X)$$\end{document} to admit a bounded point derivation at x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. These conditions are similar to conditions for the existence of bounded point derivations on other functions spaces.
引用
收藏
页码:453 / 463
页数:10
相关论文
共 15 条
  • [1] Bonilla A(1994)Meromorphic and entire approximation in BMO-norm J. Approx. Theory 76 203-218
  • [2] Fariña JC(1978)Bounded point evaluations and approximation in J. Funct. Anal. 28 1-20
  • [3] Fernström C(1969) by solutions of elliptic partial differential equations J. Funct. Anal. 3 35-47
  • [4] Polking JC(1970)On Bounded point derivations and analytic capacity Acta Math. 125 39-56
  • [5] Hallstrom AP(1972)Removable singularities of solutions of linear partial differential equations J. Funct. Anal. 10 269-280
  • [6] Harvey R(1961)Bounded point evaluations and capacity Comm. Pure Appl. Math. 14 415-426
  • [7] Polking J(1982)On functions of bounded mean oscillation Pacific J. Math. 102 369-371
  • [8] Hedberg LI(1994)Hausdorff measure, BMO, and analytic functions J. Anal. Math. 63 103-119
  • [9] John F(1964)Boundary smoothness properties of Lip Proc. Amer. Math. Soc 15 717-721
  • [10] Nirenberg L(1986) analytic functions Trans. Amer. Math. Soc. 297 283-304