A note on strongly π-regular rings

被引:0
作者
A. Y. M. Chin
机构
[1] University of Malaya,Institute of Mathematical Sciences, Faculty of Science
来源
Acta Mathematica Hungarica | 2004年 / 102卷
关键词
periodic; nilpotent; Jacobson radical; idempotent; regular; strongly ?-regular;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be an associative ring with unit and let N(R) denote the set of nilpotent elements of R. R is said to be stronglyπ-regular if for each x∈R, there exist a positive integer n and an element y∈R such that xn=xn+1y and xy=yx. R is said to be periodic if for each x∈R there are integers m,n≥ 1 such that m≠n and xm=xn. Assume that the idempotents in R are central. It is shown in this paper that R is a strongly π-regular ring if and only if N(R) coincides with the Jacobson radical of R and R/N(R) is regular. Some similar conditions for periodic rings are also obtained.
引用
收藏
页码:337 / 342
页数:5
相关论文
共 6 条
  • [1] Azumaya G.(1954)Strongly π-regular rings J. Fac. Sci. Hokkaido Univ. 13 34-39
  • [2] Badawi A.(2002)On rings with near idempotent elements Int. J. Pure Appl. Math. 1 255-261
  • [3] Chin A. Y. M.(1977)A commutativity study for periodic rings Pacific J. Math. 70 29-36
  • [4] Chen H. V.(1953)A theorem on rings Canadian J. Math. 5 238-241
  • [5] Bell H. E.(undefined)undefined undefined undefined undefined-undefined
  • [6] Herstein I. N.(undefined)undefined undefined undefined undefined-undefined