The auxiliary elliptic-like equation and the exp-function method

被引:0
作者
Hong Li
Jin-Liang Zhang
机构
[1] Zhongyuan University of Technology,College of Science
[2] Henan University of Science and Technology,College of Science
来源
Pramana | 2009年 / 72卷
关键词
Auxiliary equation method; exp-function method; exact solution; RKL models; high-order nonlinear Schrödinger equation; Hamilton amplitude equation; generalized Hirota-Satsuma coupled KdV system; generalized ZK-BBM equation; 02.30.Jr;
D O I
暂无
中图分类号
学科分类号
摘要
The auxiliary equation method is very useful for finding the exact solutions of the nonlinear evolution equations. In this paper, a new idea of finding the exact solutions of the nonlinear evolution equations is introduced. The idea is that the exact solutions of the auxiliary elliptic-like equation are derived using exp-function method, and then the exact solutions of the nonlinear evolution equations are derived with the aid of auxiliary elliptic-like equation. As examples, the RKL models, the high-order nonlinear Schrödinger equation, the Hamilton amplitude equation, the generalized Hirota-Satsuma coupled KdV system and the generalized ZK-BBM equation are investigated and the exact solutions are presented using this method.
引用
收藏
页码:915 / 925
页数:10
相关论文
共 78 条
[1]  
Adhikari S. K.(2005)undefined Phys. Lett. A346 179-undefined
[2]  
Meletlidou E.(2007)undefined Chaos, Solitons and Fractals 34 903-undefined
[3]  
Leach P. G. L.(2005)undefined Optic Fiber Tech. 11 46-undefined
[4]  
Lee J.(2004)undefined Comput. Chem. Eng. 28 557-undefined
[5]  
Krishnan J.(1995)undefined Phys. Lett. A199 169-undefined
[6]  
Runborg O.(1996)undefined Phys. Lett. A213 279-undefined
[7]  
Kevrekidis I. G.(2001)undefined Phys. Lett. A287 211-undefined
[8]  
Wang M. L.(2003)undefined Chin. Phys. 12 245-undefined
[9]  
Wang M. L.(2005)undefined Phys. Lett. A343 48-undefined
[10]  
Wang M. L.(2005)undefined Chaos, Solitons and Fractals 24 1257-undefined