First-Principles Investigation of Pd-Doped Armchair Graphene Nanoribbons as a Potential Rectifier

被引:0
|
作者
Saurabh Kharwar
Sangeeta Singh
Neeraj K. Jaiswal
机构
[1] National Institute of Technology,Microelectronics and VLSI lab
[2] Indian Institute of Information Technology,2
[3] Design and Manufacturing,D Materials Research Laboratory, Discipline of Physics
来源
Journal of Electronic Materials | 2021年 / 50卷
关键词
Armchair graphene nanoribbons (AGNRs); palladium; transport properties; rectification ratio;
D O I
暂无
中图分类号
学科分类号
摘要
A first-principles investigation is carried out on palladium (Pd)-doped armchair graphene nanoribbons (AGNRs) to investigate their structural, electronic and transport properties. The structural analysis of the considered Pd-doped nanoribbons reveals that single Pd doping at the edges of AGNRs results in the most stable configuration. The present findings reveal that the electronic transport properties are strongly dependent on the number of dopant atoms and their positions. Furthermore, it is noted that the proposed two-probe devices exhibit peculiar nonlinear I–V characteristics indicating potential for rectification behavior. Excellent high rectification ratio (RR) and reverse rectification ratio (RRR) are on the order of 1.8×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.8\times 10^{5}$$\end{document} and 9.7×104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9.7\times 10^{4}$$\end{document}, respectively, are found for center-Pd-doped 7-AGNRs. The interesting rectifying I–V behavior can be explained by the localization/delocalization effect of frontier orbitals along with the variation of the transmission spectra with the applied bias voltage. These findings indicate that Pd-doped armchair GNRs are a potential candidate for use in next-generation ultralow-power nanoscale switching devices.
引用
收藏
页码:1196 / 1206
页数:10
相关论文
共 50 条
  • [1] First-Principles Investigation of Pd-Doped Armchair Graphene Nanoribbons as a Potential Rectifier
    Kharwar, Saurabh
    Singh, Sangeeta
    Jaiswal, Neeraj K.
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (03) : 1196 - 1206
  • [2] First-principles calculations of Pd-terminated symmetrical armchair graphene nanoribbons
    Kuloglu, A. F.
    Sarikavak-Lisesivdin, B.
    Lisesivdin, S. B.
    Ozbay, E.
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 : 18 - 22
  • [3] First-Principles Calculations on Lateral Heterostructures of Armchair Graphene Antidot Nanoribbons for Band Alignment
    Zhang, Shenghui
    Chen, Haiyuan
    Hu, Jie
    Zhao, Xuhong
    Niu, Xiaobin
    ACS APPLIED NANO MATERIALS, 2022, 5 (04) : 5699 - 5708
  • [4] First-principles study on the magnetic and electronic properties of Al or P doped armchair silicene nanoribbons
    Zhang, Xiaojiao
    Zhang, Dan
    Xie, Fang
    Zheng, Xialian
    Wang, Haiyan
    Long, Mengqiu
    PHYSICS LETTERS A, 2017, 381 (25-26) : 2097 - 2102
  • [5] Separating B/N co-doped armchair graphene nanoribbons by hydrogen atom chains: Based on first-principles study
    Jiang, Zhenhong
    Wen, Ruolan
    Shao, Cheng
    Liu, Jiaxu
    Rui, Chenkang
    Miao, Rui
    Sha, Qingyi
    DIAMOND AND RELATED MATERIALS, 2021, 116
  • [6] First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules
    Srivastava, Pankaj
    Jaiswal, Neeraj K.
    Sharma, Varun
    SUPERLATTICES AND MICROSTRUCTURES, 2014, 73 : 350 - 358
  • [7] A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger
    Ma, Shouxiao
    Su, Liancun
    Jin, Li
    Su, Jinsheng
    Jin, Ying
    PHYSICS LETTERS A, 2019, 383 (30)
  • [8] First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors
    Singh, Paramjot
    Randhawa, Deep Kamal Kaur
    Tarun
    Choudhary, B. C.
    Walia, Gurleen Kaur
    Kaur, Navjot
    JOURNAL OF MOLECULAR MODELING, 2020, 26 (01)
  • [9] Transport properties of armchair graphene nanoribbons under uniaxial strain: A first principles study
    Chuong Van Nguyen
    Ilyasov, Victor V.
    Nguyen Van Hieu
    Nguyen Ngoc Hieu
    SOLID STATE COMMUNICATIONS, 2016, 237 : 10 - 13
  • [10] Effect of H and F termination on the electronic and transport properties of the BN doped armchair graphene nanoribbons: From first principles calculations
    Ri, Nam-Chol
    Wi, Ju-Hyok
    Kim, Jong-Chol
    Kim, Nam-Hyok
    Ru, Su-Il
    SOLID STATE COMMUNICATIONS, 2019, 301