On the minimum length of some linear codes

被引:0
作者
E. J. Cheon
T. Maruta
机构
[1] Gyeongsang National University,Department of Mathematics
[2] Osaka Prefecture University,Department of Mathematics and Information Sciences
来源
Designs, Codes and Cryptography | 2007年 / 43卷
关键词
Griesmer bound; Linear code; 0-Cycle; Minimum length; Minihypers; Projective space; 94B65; 94B05; 51E20; 05B25;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the minimum length nq (k, d) for some linear codes with k ≥ 5 and q ≥ 3. We prove that nq (k, d) = gq (k, d) + 1 for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{k-1}-2q^{\frac{k-1}{2}}-q+1 \le d \le q^{k-1}-2q^{\frac{k-1}{2}}$$\end{document} when k is odd, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{k-1}-q^{\frac{k}{2}}-q^{{\frac{k}{2}}-1} -q+1 \le d \le q^{k-1}-q^{\frac{k}{2}}-q^{{\frac{k}{2}}-1}$$\end{document} when k is even, and for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2q^{k-1}-2q^{k-2}-q^2-q+1 \le d \le 2q^{k-1}-2q^{k-2}-q^2$$\end{document}.
引用
收藏
页码:123 / 135
页数:12
相关论文
共 10 条
[1]  
Cheon EJ(2007)On the upper bound of the minimum length of 5-dimensional linear codes Aust J Combin 37 225-232
[2]  
Cheon EJ(2005)On the minimum length of some linear codes of dimension 5 Des Codes Cryptogr 37 421-434
[3]  
Kato T(2003)On a particular class of minihypers and its applications I. The result for general q Des Codes Cryptogr 28 51-63
[4]  
Kim SJ(1993)A characterization of some [n, k, d; q] codes meeting the Griesemer bound using a minihyper in a finite projective geometry Discrete Math 116 229-268
[5]  
Govaerts P(1999)On the minimum length of q-ary linear codes of dimension four Discrete Math 208 427-435
[6]  
Storme L(2001)On the nonexistence of q-ary linear codes of dimension five Des Codes Cryptogr 22 165-177
[7]  
Hamada N(2005)On the minimum size of some minihypers and related linear codes Des Codes Cryptogr 34 5-15
[8]  
Maruta T(undefined)undefined undefined undefined undefined-undefined
[9]  
Maruta T(undefined)undefined undefined undefined undefined-undefined
[10]  
Maruta T(undefined)undefined undefined undefined undefined-undefined