Production of gravitational waves during preheating in the Starobinsky inflationary model

被引:0
作者
Guoqiang Jin
Chengjie Fu
Puxun Wu
Hongwei Yu
机构
[1] Hunan Normal University,Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications
来源
The European Physical Journal C | 2020年 / 80卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The production of GWs during preheating in the Starobinsky model with a nonminimally coupled auxiliary scalar field is studied through the lattice simulation in this paper. We find that the GW spectrum Ωgw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\mathrm{gw}}$$\end{document} grows fast with the increase of the absolute value of coupling parameter ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}. This is because the resonant bands become broad with the increase of |ξ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\xi |$$\end{document}. When ξ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi <0$$\end{document}, Ωgw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\mathrm{gw}}$$\end{document} begins to grow once the inflation ends and grows faster than the case of ξ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi >0$$\end{document}. Ωgw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\mathrm{gw}}$$\end{document} reaches the maximum at ξ=-20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi =-20$$\end{document} (ξ=42\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi =42$$\end{document} for the case ξ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi >0$$\end{document}) and then decreases with slight oscillation. Furthermore we find that the GWs produced in the era of preheating satisfy the limits from the Planck and next-generation CMB experiments.
引用
收藏
相关论文
共 101 条
  • [1] Starobinsky AA(1980)undefined Phys. Lett. 91B 99-undefined
  • [2] Guth AH(1981)undefined Phys. Rev. D 23 347-undefined
  • [3] Linde AD(1982)undefined Phys. Lett. 108B 389-undefined
  • [4] Albrecht A(1982)undefined Phys. Rev. Lett. 48 1220-undefined
  • [5] Steinhardt PJ(1981)undefined JETP Lett. 33 532-undefined
  • [6] Mukhanov VF(1982)undefined Phys. Rev. Lett. 49 1110-undefined
  • [7] Chibisov GV(1982)undefined Phys. Lett. 115B 295-undefined
  • [8] Guth AH(1982)undefined Phys. Lett. 117B 175-undefined
  • [9] Pi SY(1983)undefined Phys. Rev. D 28 679-undefined
  • [10] Hawking SW(1992)undefined Astrophys. J. 396 L1-undefined