Multiscale analysis in Sobolev spaces on bounded domains

被引:0
作者
Holger Wendland
机构
[1] University of Oxford,Mathematical Institute
来源
Numerische Mathematik | 2010年 / 116卷
关键词
65J10; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
We study a multiscale scheme for the approximation of Sobolev functions on bounded domains. Our method employs scattered data sites and compactly supported radial basis functions of varying support radii at scattered data sites. The actual multiscale approximation is constructed by a sequence of residual corrections, where different support radii are employed to accommodate different scales. Convergence theorems for the scheme are proven, and it is shown that the condition numbers of the linear systems at each level are independent of the level, thereby establishing for the first time a mathematical theory for multiscale approximation with scaled versions of a single compactly supported radial basis function at scattered data points on a bounded domain.
引用
收藏
页码:493 / 517
页数:24
相关论文
共 17 条
  • [1] DeVore R.A.(1993)Besov spaces on domains in Trans. AMS 335 843-864
  • [2] Sharpley R.C.(1996)Multistep scattered data interpolation using compactly supported radial basis functions J. Comput. Appl. Math. 73 65-78
  • [3] Floater M.S.(1982)Scattered data interpolation: tests of some methods Math. Comput. 38 181-200
  • [4] Iske A.(2002)Error estimates for multilevel approximation using polyharmonic splines Numer. Algorithms 30 1-10
  • [5] Franke R.(1999)Multilevel interpolation and approximation Appl. Comput. Harmon. Anal. 7 243-261
  • [6] Hales S.J.(2006)Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions Constr. Approx. 24 175-186
  • [7] Levesley J.(1995)Error estimates and condition number for radial basis function interpolation Adv. Comput. Math. 3 251-264
  • [8] Narcowich F.J.(1995)Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree Adv. Comput. Math. 4 389-396
  • [9] Schaback R.(2005)Approximate interpolation with applications to selecting smoothing parameters Numer. Math. 101 643-662
  • [10] Ward J.D.(undefined)undefined undefined undefined undefined-undefined