Matching Algorithms Are Fast in Sparse Random Graphs

被引:0
作者
Holger Bast
Kurt Mehlhorn
Guido Schafer
Hisao Tamaki
机构
[1] Max-Planck-Institut fur Informatik,
[2] Stuhlsatzenhausweg 85,undefined
[3] 66123 Saarbrucken,undefined
[4] Meiji University,undefined
[5] School of Science and Technology,undefined
[6] 1-1-1 HigashiMita,undefined
[7] Tama,undefined
[8] Kawasaki 214-8571,undefined
来源
Theory of Computing Systems | 2006年 / 39卷
关键词
High Probability; Computational Mathematic; Bipartite Graph; Relate Problem; Random Graph;
D O I
暂无
中图分类号
学科分类号
摘要
We present an improved average case analysis of the maximum cardinality matching problem. We show that in a bipartite or general random graph on n vertices, with high probability every non-maximum matching has an augmenting path of length O(log n). This implies that augmenting path algorithms like the Hopcroft-Karp algorithm for bipartite graphs and the Micali-Vazirani algorithm for general graphs, which have a worst case running time of O(m√n), run in time O(m log n) with high probability, where m is the number of edges in the graph. Motwani proved these results for random graphs when the average degree is at least ln (n) [Average Case Analysis of Algorithms for Matchings and Related Problems, Journal of the ACM, 41(6):1329-1356, 1994]. Our results hold if only the average degree is a large enough constant. At the same time we simplify the analysis of Motwani.
引用
收藏
页码:3 / 14
页数:11
相关论文
共 50 条
  • [41] The energy of random graphs
    Du, Wenxue
    Li, Xueliang
    Li, Yiyang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2334 - 2346
  • [42] The rank of random graphs
    Costello, Kevin P.
    Vu, Van H.
    RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (03) : 269 - 285
  • [43] Global offensive alliances in graphs and random graphs
    Harutyunyan, Ararat
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 522 - 526
  • [44] DIFFERENTIAL EQUATIONS FOR RANDOM PROCESSES AND RANDOM GRAPHS
    Wormald, Nicholas C.
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) : 1217 - 1235
  • [45] Sums and products along sparse graphs
    Noga Alon
    Omer Angel
    Itai Benjamini
    Eyal Lubetzky
    Israel Journal of Mathematics, 2012, 188 : 353 - 384
  • [46] MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS
    M.I. Ostrovskii
    ActaMathematicaScientia, 2011, 31 (02) : 634 - 640
  • [47] Further Results on Distance Estrada Index of Random Graphs
    Yilun Shang
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 537 - 544
  • [48] Further Results on Distance Estrada Index of Random Graphs
    Shang, Yilun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (02) : 537 - 544
  • [49] MINIMUM CONGESTION SPANNING TREES IN BIPARTITE AND RANDOM GRAPHS
    Ostrovskii, M. I.
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (02) : 634 - 640
  • [50] SECRECY TRANSFER FOR SENSOR NETWORKS: FROM RANDOM GRAPHS TO SECURE RANDOM GEOMETRIC GRAPHS
    Liu, Zhihong
    Ma, Jianfeng
    Zeng, Yong
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2013, 6 (01): : 77 - 94