Matching Algorithms Are Fast in Sparse Random Graphs

被引:0
|
作者
Holger Bast
Kurt Mehlhorn
Guido Schafer
Hisao Tamaki
机构
[1] Max-Planck-Institut fur Informatik,
[2] Stuhlsatzenhausweg 85,undefined
[3] 66123 Saarbrucken,undefined
[4] Meiji University,undefined
[5] School of Science and Technology,undefined
[6] 1-1-1 HigashiMita,undefined
[7] Tama,undefined
[8] Kawasaki 214-8571,undefined
来源
Theory of Computing Systems | 2006年 / 39卷
关键词
High Probability; Computational Mathematic; Bipartite Graph; Relate Problem; Random Graph;
D O I
暂无
中图分类号
学科分类号
摘要
We present an improved average case analysis of the maximum cardinality matching problem. We show that in a bipartite or general random graph on n vertices, with high probability every non-maximum matching has an augmenting path of length O(log n). This implies that augmenting path algorithms like the Hopcroft-Karp algorithm for bipartite graphs and the Micali-Vazirani algorithm for general graphs, which have a worst case running time of O(m√n), run in time O(m log n) with high probability, where m is the number of edges in the graph. Motwani proved these results for random graphs when the average degree is at least ln (n) [Average Case Analysis of Algorithms for Matchings and Related Problems, Journal of the ACM, 41(6):1329-1356, 1994]. Our results hold if only the average degree is a large enough constant. At the same time we simplify the analysis of Motwani.
引用
收藏
页码:3 / 14
页数:11
相关论文
共 50 条
  • [31] A matrix-algebraic formulation of distributed -memory maximal cardinality matching algorithms in bipartite graphs
    Azad, Ariful
    Buluc, Aydin
    PARALLEL COMPUTING, 2016, 58 : 117 - 130
  • [32] Embedding graphs with bounded degree in sparse pseudorandom graphs
    Y. Kohayakawa
    V. Rödl
    P. Sissokho
    Israel Journal of Mathematics, 2004, 139 : 93 - 137
  • [33] Sandwiching dense random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (1-2) : 115 - 158
  • [34] Sandwiching dense random regular graphs between binomial random graphs
    Pu Gao
    Mikhail Isaev
    Brendan D. McKay
    Probability Theory and Related Fields, 2022, 184 : 115 - 158
  • [35] Upper tails for subgraph counts in random graphs
    Svante Janson
    Krzysztof Oleszkiewicz
    Andrzej Ruciński
    Israel Journal of Mathematics, 2004, 142 : 61 - 92
  • [36] Degree sequences of random digraphs and bipartite graphs
    McKay, Brendan D.
    Skerman, Fiona
    JOURNAL OF COMBINATORICS, 2016, 7 (01) : 21 - 49
  • [37] Triangles in random graphs
    Loebl, M
    Matousek, J
    Pangrác, O
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 181 - 185
  • [38] Random Feynman graphs
    Söderberg, B
    SCIENCE OF COMPLEX NETWORKS: FROM BIOLOGY TO THE INTERNET AND WWW, 2005, 776 : 118 - 130
  • [39] RANDOM QUANTUM GRAPHS
    Chirvasitu, Alexandru
    Wasilewski, Mateusz
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (05) : 3061 - 3087
  • [40] Random graphs on surfaces
    McDiarmid, Colin
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) : 778 - 797