Matching Algorithms Are Fast in Sparse Random Graphs

被引:0
|
作者
Holger Bast
Kurt Mehlhorn
Guido Schafer
Hisao Tamaki
机构
[1] Max-Planck-Institut fur Informatik,
[2] Stuhlsatzenhausweg 85,undefined
[3] 66123 Saarbrucken,undefined
[4] Meiji University,undefined
[5] School of Science and Technology,undefined
[6] 1-1-1 HigashiMita,undefined
[7] Tama,undefined
[8] Kawasaki 214-8571,undefined
来源
Theory of Computing Systems | 2006年 / 39卷
关键词
High Probability; Computational Mathematic; Bipartite Graph; Relate Problem; Random Graph;
D O I
暂无
中图分类号
学科分类号
摘要
We present an improved average case analysis of the maximum cardinality matching problem. We show that in a bipartite or general random graph on n vertices, with high probability every non-maximum matching has an augmenting path of length O(log n). This implies that augmenting path algorithms like the Hopcroft-Karp algorithm for bipartite graphs and the Micali-Vazirani algorithm for general graphs, which have a worst case running time of O(m√n), run in time O(m log n) with high probability, where m is the number of edges in the graph. Motwani proved these results for random graphs when the average degree is at least ln (n) [Average Case Analysis of Algorithms for Matchings and Related Problems, Journal of the ACM, 41(6):1329-1356, 1994]. Our results hold if only the average degree is a large enough constant. At the same time we simplify the analysis of Motwani.
引用
收藏
页码:3 / 14
页数:11
相关论文
共 50 条
  • [1] Matching algorithms are fast in sparse random graphs
    Bast, H
    Mehlhorn, K
    Schäfer, G
    Tamaki, H
    THEORY OF COMPUTING SYSTEMS, 2006, 39 (01) : 3 - 14
  • [2] The diameter of sparse random graphs
    Fernholz, Daniel
    Ramachandran, Vijaya
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (04) : 482 - 516
  • [3] The matching energy of random graphs
    Chen, Xiaolin
    Li, Xueliang
    Lian, Huishu
    DISCRETE APPLIED MATHEMATICS, 2015, 193 : 102 - 109
  • [4] A note on the width of sparse random graphs
    Do, Tuan Anh
    Erde, Joshua
    Kang, Mihyun
    JOURNAL OF GRAPH THEORY, 2024, 106 (02) : 273 - 295
  • [6] The largest hole in sparse random graphs
    Draganic, Nemanja
    Glock, Stefan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 666 - 677
  • [7] Assortativity and clustering of sparse random intersection graphs
    Bloznelis, Mindaugas
    Jaworski, Jerzy
    Kurauskas, Valentas
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 24
  • [8] On the rank, Kernel, and core of sparse random graphs
    Demichele, Patrick
    Glasgow, Margalit
    Moreira, Alexander
    RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (04) : 719 - 793
  • [9] Note on matching preclusion number of random graphs
    Gu, Ran
    Mao, Yaping
    Ye, Guoju
    THEORETICAL COMPUTER SCIENCE, 2020, 833 : 1 - 10
  • [10] UNIVERSALITY OF CUTOFF FOR GRAPHS WITH AN ADDED RANDOM MATCHING
    Hermon, Jonathan
    Sly, Allan
    Sousi, Perla
    ANNALS OF PROBABILITY, 2022, 50 (01) : 203 - 240