Sylvester Waves in the Coxeter Groups

被引:0
作者
Leonid G. Fel
Boris Y. Rubinstein
机构
[1] Tel Aviv University,School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences
[2] Northwestern University,Department of Engineering Sciences and Applied Mathematics
来源
The Ramanujan Journal | 2002年 / 6卷
关键词
partitions; asymptotic of arithmetic functions; Coxeter groups;
D O I
暂无
中图分类号
学科分类号
摘要
A new recursive procedure of the calculation of partition numbers function W(s, dm) is suggested. We find its zeroes and prove a lemma on the function parity properties. The explicit formulas of W(s, dm) and their periods τ(G) for the irreducible Coxeter groups and a list for the first twelve symmetric group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}$$ \end{document}m are presented. A least common multiple\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$lcm$$ \end{document}(m) of the series of the natural numbers 1,2,...,m plays a role in the period τ(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}$$ \end{document}m) of W(s, dm) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}$$ \end{document}m.
引用
收藏
页码:307 / 329
页数:22
相关论文
共 11 条
  • [1] Canfield E.R.(1997)Outlines of the lectures were printed privately in 1859 and republished Electr. J. Combinatorics 4 R6-52
  • [2] Cayley A.(1858)undefined Phil. Trans. R. Soc. London 148 47-450
  • [3] Erdös P.(1942)undefined Annals of Math. 43 437-143
  • [4] Fel L.G.(2000)undefined J. Physics A: Math. Gen. 33 6669-84
  • [5] Machavariani V. S.(1909)undefined Quart. J. Math. 40 57-96
  • [6] Bergman D.J.(1857)undefined Quart. J. Math. 1 81-136
  • [7] Glaisher J.W.L.(1897)undefined Proc. London Math. Soc. 28 33-108
  • [8] Sylvester J.J.(1882)undefined Amer. Jour. Math. 5 119-undefined
  • [9] Sylvester J.J.(1951)undefined Quart. J. Math. (Oxford) 2 85-undefined
  • [10] Sylvester J.J.(undefined)undefined undefined undefined undefined-undefined