Arc-transitive distance-regular covers of cliques with λ = µ

被引:0
|
作者
A. A. Makhnev
D. V. Paduchikh
L. Yu. Tsiovkina
机构
[1] Ural Branch of the Russian Academy of Sciences,Institute of Mathematics and Mechanics
[2] Ural Federal University,Institute of Radioelectronics and Informational Technologies
关键词
arc-transitive graphs; antipodal distance-regular graphs; automorphism groups;
D O I
暂无
中图分类号
学科分类号
摘要
We study antipodal distance-regular graphs of diameter 3 such that their automorphism group acts transitively on the set of pairs (a, b), where {a, b} is an edge of the graph. Since the automorphism group of such graphs acts 2-transitively on the set of antipodal classes, the classification of 2-transitive permutation groups can be used. We classify arc-transitive distance-regular graphs of diameter 3 in which any two vertices at distance at most two have exactly µ common neighbors.
引用
收藏
页码:124 / 134
页数:10
相关论文
共 50 条
  • [1] Arc-Transitive Distance-Regular Covers of Cliques with λ = μ
    Makhnev, A. A.
    Paduchikh, D. V.
    Tsiovkina, L. Yu
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 : S124 - S134
  • [2] Arc-transitive distance-regular coverings of cliques with lambda = mu
    Makhnev, A. A.
    Paduchikh, D. V.
    Tsiovkina, L. Yu.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (02): : 237 - 246
  • [3] Arc-transitive antipodal distance-regular covers of complete graphs related to SU3(q)
    Tsiovkina, L. Yu.
    DISCRETE MATHEMATICS, 2017, 340 (02) : 63 - 71
  • [4] Arc-transitive abelian regular covers of the Heawood graph
    Conder, Marston D. E.
    Ma, Jicheng
    JOURNAL OF ALGEBRA, 2013, 387 : 243 - 267
  • [5] Arc-transitive dihedral regular covers of cubic graphs
    Ma, Jicheng
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):
  • [6] Arc-transitive abelian regular covers of cubic graphs
    Conder, Marston D. E.
    Ma, Jicheng
    JOURNAL OF ALGEBRA, 2013, 387 : 215 - 242
  • [7] ARC-TRANSITIVE ANTIPODAL DISTANCE-REGULAR GRAPHS OF DIAMETER THREE RELATED TO PSLd(q)
    Makhnev, A. A.
    Tsiovkina, L. Y. U.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 1339 - 1345
  • [8] Edge-symmetric distance-regular covers of cliques with λ = μ
    A. A. Makhnev
    D. V. Paduchikh
    L. Yu. Tsiovkina
    Doklady Mathematics, 2013, 87 : 15 - 19
  • [9] Edge-symmetric distance-regular covers of cliques with λ = μ
    Makhnev, A. A.
    Paduchikh, D. V.
    Tsiovkina, L. Yu.
    DOKLADY MATHEMATICS, 2013, 87 (01) : 15 - 19
  • [10] Edge-symmetric distance-regular covers of cliques: Affine case
    A. A. Makhnev
    D. V. Paduchikh
    L. Yu. Tsiovkina
    Doklady Mathematics, 2013, 87 : 224 - 228