Repeated-Root Constacyclic Codes of Length kℓps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ell p^s$$\end{document}

被引:0
作者
Yan Liu
Minjia Shi
机构
[1] Anhui University,School of Mathematical Sciences
关键词
Constacyclic code; Dual code; Generator polynomial; Self-dual repeated-root cyclic code; 94B25; 05E30;
D O I
10.1007/s40840-019-00787-9
中图分类号
学科分类号
摘要
In this paper, we investigate all repeated-root constacyclic codes and their duals of length kℓps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ell p^s$$\end{document} over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} in terms of generator polynomials, where ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is an odd prime different from p and k is an odd prime different from both ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and p such that k=4h+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=4h+1$$\end{document} for some prime h. As an application, the characterization and enumeration of all self-dual repeated-root cyclic codes of length 2skℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^sk\ell $$\end{document} over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} are obtained.
引用
收藏
页码:2009 / 2027
页数:18
相关论文
共 48 条
[1]  
Bakshi GK(2012)A class of constacyclic codes over a finite field Finite Fields Appl. 18 362-377
[2]  
Raka M(2014)Repeated-root constacyclic codes of length Discrete Appl. Math. 177 60-70
[3]  
Chen BC(2015) and their duals Finite Fields Appl. 33 137-159
[4]  
Dinh HQ(2008)Repeated-root constacyclic codes of length Finite Fields Appl. 14 22-40
[5]  
Liu HW(2010)On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions J. Algebra 324 940-950
[6]  
Chen BC(2012)Constacyclic codes of length Finite Fields Appl. 18 133-143
[7]  
Dinh HQ(2013) over Discrete Math. 313 982-991
[8]  
Liu HW(2014)Repeated-root constacyclic codes of length Contemp. Math. 609 69-87
[9]  
Dinh HQ(2009)Structure of repeated-root constacyclic codes of length IEEE Trans. Inf. Theory 57 2243-2251
[10]  
Dinh HQ(2008) and their duals AAECC 19 509-525