The Equivalence of Two Notions of Discreteness of Triangulated Categories

被引:0
作者
Lingling Yao
Dong Yang
机构
[1] Southeast University,School of Mathematics
[2] Nanjing University,Department of Mathematics
来源
Algebras and Representation Theory | 2021年 / 24卷
关键词
Derived discrete; Discreteness of triangulated category; ST-triple; T-structure; Co-t-structure; 18E30; 16E35;
D O I
暂无
中图分类号
学科分类号
摘要
Given an ST-triple (C,D,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal {C},\mathcal {D},M)$\end{document} one can associate a co-t-structure on C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document} and a t-structure on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {D}$\end{document}. It is shown that the discreteness of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document} with respect to the co-t-structure is equivalent to the discreteness of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {D}$\end{document} with respect to the t-structure. As a special case, the discreteness of Db(modA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {D}^{b}(\textsf {mod} A)$\end{document} in the sense of Vossieck is equivalent to the discreteness of Kb(projA) in a dual sense, where A is a finite-dimensional algebra.
引用
收藏
页码:1295 / 1312
页数:17
相关论文
共 37 条
[1]  
Adachi T(2019)Discreteness of silting objects and t-structures of triangulated categories Proc. London Math. Soc. 118 1-42
[2]  
Mizuno Y(2013)Tilting-connected symmetric algebras Algebr. Represent. Theory 6 873-894
[3]  
Yang D(2012)Silting mutation in triangulated categories J. Lond. Math. Soc. (2) 85 633-668
[4]  
Aihara T(2017)Ladders and simplicity of derived module categories J. Algebra 472 15-66
[5]  
Aihara T(2008)María josé Souto Salorio, and Sonia Trepode, Ext-projectives in suspended subcategories J. Pure Appl. Algebra 212 423-434
[6]  
Iyama O(2007)Homological and homotopical aspects of torsion theories Mem. Amer. Math. Soc. 188 viii+ 207-49
[7]  
Hügel LA(2004)Classification of discrete derived categories Cent. Eur. J. Math. 2 19-504
[8]  
Koenig S(2010)Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general) J. K-Theory 6 3 387-188
[9]  
Liu Q(2018)Discrete triangulated categories Bull. London Math. Soc. 50 174-35
[10]  
Yang D(2002)On t-structures and torsion theories induced by compact objects J. Pure Appl. Algebra 167 15-182