On Linear Inequality Systems with Smooth Coefficients

被引:0
作者
M. A. Goberna
L. Hernández
M. I. Todorov
机构
[1] Universidad de Alicante,Departamento de Estadística e Investigación Operativa
[2] Universidad Autónoma de Puebla,Departamento de Mathemáticas
[3] Universidad de las Américas,Departmento de Física y Matemáticas
来源
Journal of Optimization Theory and Applications | 2005年 / 124卷
关键词
Linear systems; closed convex sets; linear semi-infinite programming;
D O I
暂无
中图分类号
学科分类号
摘要
A linear inequality system with infinitely many constraints is polynomial [analytical] if its index set is a compact interval of the real line and all its coefficients are polynomial [analytical] functions of the index on this interval. This paper provides sufficient conditions for a given closed convex set to be the solution set of a certain polynomial or at least analytical system.
引用
收藏
页码:363 / 386
页数:23
相关论文
共 15 条
[1]  
Anderson E. J.(1989)An Extension of the Simplex Algorithm for Semi-Infinite Linear Programming Mathematical Programming 44 247-269
[2]  
Lewis A. S.(1992)A Purification Algorithm for Semi-Infinite Programming European Journal of Operations Research 57 412-420
[3]  
León T.(1999)Analytical Linear Inequality Systems and Optimization Journal of Optimization Theory and Applications 103 95-119
[4]  
Vercher T.(1994)New Descent Rules for Solving the Linear Semi-Infinite Optimization Problem Operations Research Letters 15 105-114
[5]  
Goberna M. A.(1995)Optimality Theory for Semi-Infinite Linear Programming Numerical Functional Analysis and Optimization 16 669-700
[6]  
Jornet V.(2004)Representability of Convex Sets by Analytical Linear Inequality Systems Linear Algebra and Its Applications 380 135-150
[7]  
Puente R.(1966)Generalizations of Some Fundamental Theorems on Linear Inequalities Acta Mathematica Sinica 16 25-40
[8]  
Todorov I. M.(undefined)undefined undefined undefined undefined-undefined
[9]  
León T.(undefined)undefined undefined undefined undefined-undefined
[10]  
Vercher T.(undefined)undefined undefined undefined undefined-undefined