Some results on the transcendental entire solutions of certain type of non-linear shift-differential equations

被引:0
作者
Abhijit Banerjee
Tania Biswas
机构
[1] University of Kalyani,Department of Mathematics
来源
The Journal of Analysis | 2022年 / 30卷
关键词
Entire solutions; Non-linear shift-differential equations; Exponential polynomial; Nevanlinna theory; 30D35; 34M05; 39B32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have studied the nature and form of solutions of three types of non-linear shift-differential equations under the aegis of the following compact form: fn-m(z)L~(z,f)+q(z)eQ(z)f(z+c)=p1eλ1z+p2eλ2z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f^{n-m}(z)\widetilde{L}(z,f)+q(z)e^{Q(z)}f(z+c)=p_1e^{\lambda _1z}+p_2e^{\lambda _2z}, \end{aligned}$$\end{document}where L~(z,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{L}(z,f)$$\end{document} is a linear differential polynomial in f; n, m are non-negative integers; q, Q respectively are two non-zero and non-constant polynomials; c,p1,p2,λ1,λ2∈C\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c, p_1, p_2,\lambda _1, \lambda _2\in {\mathbb {C}}\backslash \{0\}$$\end{document}. Our results improve two recent results of Chen et al. (Comput Methods Funct Theory 19(1):17–36, 2019) and Chen et al. (Comput Methods Funct Theory 21(2):199-218, 2021). Most importantly, in one of our result we have succeeded to answer partially the conjecture of Chen et al. (Comput Methods Funct Theory 19(1):17–36, 2019). We have also illustrated a handful number of examples to clarify our results.
引用
收藏
页码:1709 / 1724
页数:15
相关论文
共 35 条
[11]  
Liu M(1978)Zur Wertverteilung von exponential polynomen Manuscripta Mathematica 26 155-167
[12]  
Korhonen R(2012)Exponential polynomials as solutions of certain non-linear difference equations Acta Mathematica Sinica 28 1295-1306
[13]  
Latreuch Z(2015)Entire solutions for non-linear differential-difference equations Electronic Journal of Differential Equations 2015 1-8
[14]  
Li CP(2001)On entire solution of a certain type of non-linear differential equation Bulletin of the Australian Mathematical Society 64 377-380
[15]  
Lü F(2010)On analogies between non-linear difference and differential equations Proceedings of the Japan Academy Series A 86 10-14
[16]  
Xu JF(2011)On entire solutions of a certain type of non-linear differential and difference equations Taiwanese Journal of Mathematics 15 2145-2157
[17]  
Li P(undefined)undefined undefined undefined undefined-undefined
[18]  
Yang CC(undefined)undefined undefined undefined undefined-undefined
[19]  
Liao LW(undefined)undefined undefined undefined undefined-undefined
[20]  
Yang CC(undefined)undefined undefined undefined undefined-undefined