Additive mappings act as a generalized left (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-derivation in rings

被引:0
作者
Faiza Shujat
Abu Zaid Ansari
Fatma Salama
机构
[1] Taibah University,Department of Mathematics, Faculty of Science
[2] Islamic University Madinah,Department of Mathematics, Faculty of Science
[3] Tanta University,Department of Mathematics, Faculty of Science
关键词
Additive mappings; Generalized (Jordan)(; )-derivations; (Jordan); -centralizers; 16W25; 16U80;
D O I
10.1007/s40574-018-0165-1
中图分类号
学科分类号
摘要
If F,D:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F,D:R\rightarrow R$$\end{document} are additive mappings satisfyingF(xnyn)=α(xn)F(yn)+β(yn)D(xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(x^{n}y^{n})=\alpha (x^n)F(y^{n})+\beta (y^n)D(x^{n})$$\end{document} for all x,y∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in R$$\end{document}, where α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta $$\end{document} are automorphisms on R, then F becomes generalized left (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-derivation with associated Jordan left (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-derivation D on R under suitable torsion restriction.
引用
收藏
页码:425 / 430
页数:5
相关论文
共 12 条
[1]  
Ali S(2011)On generalized left derivations in rings and Banach algebras Aequ. Math. 81 209-226
[2]  
Ansari AZ(2014)Additive mappings satisfying algebraic conditions in rings Rend. Circ. Math. Palermo 63 211-219
[3]  
Shujat F(2008)On generalized Jordan left derivations in rings Bull. Korean Math. Soc. 45 253-261
[4]  
Ashraf M(2013)An additive mapping satisfying an algebraic condition in rings with identity J. Adv. Res. Pure Math. 5 38-45
[5]  
Ali S(1957)Derivations in prime rings Proc. Am. Math. Soc. 8 1104-1110
[6]  
Ashraf M(1997)Jordan left derivations on semiprime rings Math. J. Okayama Univ. 39 1-6
[7]  
Rehman N(2008)On left Jordan derivations on rings and Banach algebras Aequ. Math. 75 260-266
[8]  
Ansari AZ(1991)On centralizers of semiprime rings Comment. Math. Univ. Carolinae 32 609-614
[9]  
Herstein IN(undefined)undefined undefined undefined undefined-undefined
[10]  
Vukman J(undefined)undefined undefined undefined undefined-undefined