The complexity of leader election in diameter-two networks

被引:0
作者
Soumyottam Chatterjee
Gopal Pandurangan
Peter Robinson
机构
[1] University of Houston,
[2] McMaster University,undefined
来源
Distributed Computing | 2020年 / 33卷
关键词
Distributed algorithm; Leader election; Randomized algorithm; Message complexity; Time complexity; Lower bound;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on studying the message complexity of implicit leader election in synchronous distributed networks of diameter two. Kutten et al. (J ACM 62(1):7:1–7:27, 2015) showed a fundamental lower bound of Ω(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (m)$$\end{document} (m is the number of edges in the network) on the message complexity of (implicit) leader election that applied also to Monte Carlo randomized algorithms with constant success probability; this lower bound applies for graphs that have diameter at least three. On the other hand, for complete graphs (i.e., graphs with diameter one), Kutten et al. (Theor Comput Sci 561(Part B):134–143, 2015) established a tight bound of Θ~(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\varTheta }(\sqrt{n})$$\end{document} on the message complexity of randomized leader election (n is the number of nodes in the network). For graphs of diameter two, the complexity was not known. In this paper, we settle this complexity by showing a tight bound of Θ~(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\varTheta }(n)$$\end{document} on the message complexity of leader election in diameter-two networks. We first give a simple randomized Monte-Carlo leader election algorithm that with high probability (i.e., probability at least 1-n-c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 - n^{-c}$$\end{document}, for some fixed positive constant c) succeeds and uses O(nlog3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log ^3{n})$$\end{document} messages and runs in O(1) rounds; this algorithm works without knowledge of n (and hence needs no global knowledge). We then show that any algorithm (even Monte Carlo randomized algorithms with large enough constant success probability) needs Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document} messages (even when n is known), regardless of the number of rounds. We also present an O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log {n})$$\end{document} message deterministic algorithm that takes O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log {n})$$\end{document} rounds (but needs knowledge of n); we show that this message complexity is tight for deterministic algorithms. Together with the two previous results of Kutten et al., our results fully characterize the message complexity of leader election vis-à-vis the graph diameter.
引用
收藏
页码:189 / 205
页数:16
相关论文
共 27 条
[1]  
Afek Y(1991)Time and message bounds for election in synchronous and asynchronous complete networks SIAM J. Comput. 20 376-394
[2]  
Gafni E(2012)Efficient distributed approximation algorithms via probabilistic tree embeddings Distrib. Comput. 25 189-205
[3]  
Khan M(1990)A modular technique for the design of efficient distributed leader finding algorithms ACM Trans. Program. Lang. Syst. (TOPLAS) 12 84-101
[4]  
Kuhn F(1987)The optimality of distributive constructions of minimum weight and degree restricted spanning trees in a complete network of processors SIAM J. Comput. 16 231-236
[5]  
Malkhi D(1989)Optimal lower bounds for some distributed algorithms for a complete network of processors Theor. Comput. Sci. 64 125-132
[6]  
Pandurangan G(2015)On the complexity of universal leader election J. ACM 62 7:1-7:27
[7]  
Talwar K(2015)Sublinear bounds for randomized leader election Theor. Comput. Sci. 561 134-143
[8]  
Korach E(1990)Time-optimal leader election in general networks J. Parallel Distrib. Comput. 8 96-99
[9]  
Kutten S(undefined)undefined undefined undefined undefined-undefined
[10]  
Moran S(undefined)undefined undefined undefined undefined-undefined