Supersymmetry enhancement and junctions in S-folds

被引:0
作者
Yosuke Imamura
Hirotaka Kato
Daisuke Yokoyama
机构
[1] Tokyo Institute of Technology,Department of Physics
[2] King’s College London,Department of Mathematics
来源
Journal of High Energy Physics | / 2016卷
关键词
D-branes; Extended Supersymmetry;
D O I
暂无
中图分类号
学科分类号
摘要
We study supersymmetry enhancement from N=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=3 $$\end{document} to N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} proposed by Aharony and Tachikawa by using string junctions in S-folds. The central charges carried by junctions play a central role in our analysis. We consider planer junctions in a specific plane. Before the S-folding they carry two complex central charges, which we denote by Z and Z¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{Z} $$\end{document}. The S-fold projection eliminates Z¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{Z} $$\end{document} as well as one of the four supercharges, and when the supersymmetry is enhanced Z¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{Z} $$\end{document} should be reproduced by some non-perturbative mechanism. For the models of ℤ3 and ℤ4 S-folds which are expected to give SU(3) and SO(5) N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} theories we compare the junction spectra with those in perturbative brane realization of the same theories. We establish one-to-one correspondence so that Z coincides. By using the correspondence we also give an expression for the enhanced central charge Z¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{Z} $$\end{document}.
引用
收藏
相关论文
共 39 条
[1]  
Aharony O(2016)On four dimensional N = 3 superconformal theories JHEP 04 040-undefined
[2]  
Evtikhiev M(1999)N = 6 supergravity on AdS Lett. Math. Phys. 47 255-undefined
[3]  
Ferrara S(1983) and the SU(2, 2/3) superconformal correspondence Nucl. Phys. B 226 269-undefined
[4]  
Porrati M(1983)Covariant Field Equations of Chiral N = 2, D = 10 Supergravity Phys. Lett. B 126 301-undefined
[5]  
Zaffaroni A(2016)Symmetries and Transformations of Chiral N = 2, D = 10 Supergravity JHEP 06 044-undefined
[6]  
Schwarz JH(2016)S-folds and 4d JHEP 09 116-undefined
[7]  
Schwarz JH(2016) superconformal field theories JHEP 05 088-undefined
[8]  
West PC(1997)On 4d rank-one Nucl. Phys. Proc. Suppl. 55B 1-undefined
[9]  
Aharony O(1998) superconformal field theories Phys. Lett. B 423 261-undefined
[10]  
Tachikawa Y(1998)Expanding the landscape of JHEP 03 005-undefined