Data compression on the sphere using multiscale radial basis function approximation

被引:0
作者
Q. T. Le Gia
H. Wendland
机构
[1] University of New South Wales,School of Mathematics and Statistics
[2] University of Bayreuth,Department of Mathematics
来源
Advances in Computational Mathematics | 2014年 / 40卷
关键词
Unit sphere; Radial basis function; Multiscale; 46N40; 68U10;
D O I
暂无
中图分类号
学科分类号
摘要
We propose two new approaches for efficiently compressing unstructured data defined on the unit sphere. Both approaches are based upon a meshfree multiscale representation of functions on the unit sphere. This multiscale representation employs compactly supported radial basis functions of different scales. The first approach is based on a simple thresholding strategy after the multiscale representation is computed. The second approach employs a dynamical discarding strategy, where small coefficients are already discarded during the computation of the approximate multiscale representation. We analyse the (additional) error which comes with either compression and provide numerical experiments using topographical data of the earth.
引用
收藏
页码:923 / 943
页数:20
相关论文
共 28 条
  • [1] Antoine J-P(2010)Wavelet transform on manifolds: old and new approaches Appl. Comput. Harmon. Anal. 28 189-202
  • [2] Roşca D(1999)Wavelets on the 2-sphere: a group-theoretical approach Appl. Comput. Harmon. Anal. 7 262-291
  • [3] Vandergheynst P(2010)Multiscale analysis in Sobolev spaces on the sphere SIAM J. Numer. Anal. 48 2065-2090
  • [4] Antoine JP(2011)Data compression on the sphere Astron. Astrophys. 531 1-13
  • [5] Vandergheynst P(2006)Localized tight frames on spheres SIAM J. Math. Anal. 38 574-594
  • [6] Le Gia QT(2002)Scattered data interpolation on spheres: error estimates and locally supported basis functions SIAM J. Math. Anal. 33 1393-1410
  • [7] Sloan I(2010)Needatool: a needlet analysis tool for cosmological data processing Astrophys. J. 723 1-9
  • [8] Wendland H(1997)Distributing many points on a sphere Math. Intell. 19 5-11
  • [9] McEwen D(1994)Minimal energy on the sphere Math. Res. Lett. 1 647-662
  • [10] Wiaux Y(1942)Positive definite functions on spheres Duke Math. J. 9 96-108