The Radius of Metric Regularity Revisited

被引:0
作者
Gfrerer, Helmut [1 ]
Kruger, Alexander Y. [2 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Ton Duc Thang Univ, Fac Math & Stat, Optimizat Res Grp, Ho Chi Minh City, Vietnam
基金
欧盟地平线“2020”; 澳大利亚研究理事会;
关键词
Metric regularity; Strong metric regularity; Radius of regularity; Stability; Lyusternik-Graves theorem; PERTURBATION STABILITY;
D O I
10.1007/s11228-023-00681-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper extends the radius of metric regularity theorem by Dontchev, Lewis and Rockafellar (2003) by providing an exact formula for the radius with respect to Lipschitz continuous perturbations in general Asplund spaces, thus, answering affirmatively an open question raised twenty years ago by Ioffe. In the non-Asplund case, we give a natural upper bound for the radius complementing the conventional lower bound in the theorem by Dontchev, Lewis and Rockafellar.
引用
收藏
页数:13
相关论文
共 24 条
  • [1] NEWTON'S METHOD FOR SOLVING INCLUSIONS USING SET-VALUED APPROXIMATIONS
    Adly, Samir
    Cibulka, Radek
    Huynh Van Ngai
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (01) : 159 - 184
  • [2] [Anonymous], 1981, 133181 VINITI
  • [3] Clarke Jacobians, Bouligand Jacobians, and compact connected sets of matrices
    Bartl, David
    Fabian, Marian
    Kolar, Jan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (01)
  • [4] Metric regularity of semi-infinite constraint systems
    Cánovas, MJ
    Dontchev, L
    López, MA
    Parra, J
    [J]. MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 329 - 346
  • [5] Metric regularity and systems of generalized equations
    Dmitruk, Andrei V.
    Kruger, Alexander Y.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 864 - 873
  • [6] LYUSTERNIK THEOREM AND THE THEORY OF EXTREMA
    DMITRUK, AV
    MILYUTIN, AA
    OSMOLOVSKII, NP
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (06) : 11 - 51
  • [7] Regularity and conditioning of solution mappings in variational analysis
    Dontchev, AL
    Rockafellar, RT
    [J]. SET-VALUED ANALYSIS, 2004, 12 (1-2): : 79 - 109
  • [8] The radius of metric regularity
    Dontchev, AL
    Lewis, AS
    Rockafellar, RT
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (02) : 493 - 517
  • [9] Dontchev AL., 2014, SPRINGER SERIES OPER, V2nd
  • [10] The Radius of Metric Subregularity
    Dontchev, Asen L.
    Gfrerer, Helmut
    Kruger, Alexander Y.
    Outrata, Jiri V.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2020, 28 (03) : 451 - 473