Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland; [Comparaison des méthodes AVI, SINTACS modifiée et GALDIT d’évaluation de la vulnérabilité d’un aquifère côtier peu profond dans le Sud de la Finlande pour des scénarios de changement climatique]; [Comparação dos métodos de vulnerabilidade AVI, SINTACS modificado e GALDIT sob cenários futuros de mudanças climáticas para um aquífero costeiro raso de baixa altitude no sul da Finlândia]; [Comparación de los métodos de vulnerabilidad AVI, SINTACS modificado y GALDIT en función de escenarios futuros de cambio climático para un acuífero costero somero en zonas de tierras bajas en el sur de Finlandia]

被引:0
作者
Luoma S. [1 ]
Okkonen J. [2 ]
Korkka-Niemi K. [3 ]
机构
[1] Geological Survey of Finland, P.O. Box 96, Espoo
[2] Geological Survey of Finland, P.O. Box 97, Kokkola
[3] Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki
基金
欧盟地平线“2020”;
关键词
Aquifer vulnerability; Climate change; Coastal aquifer; Finland; Vulnerability mapping;
D O I
10.1007/s10040-016-1471-2
中图分类号
学科分类号
摘要
A shallow unconfined low-lying coastal aquifer in southern Finland surrounded by the Baltic Sea is vulnerable to changes in groundwater recharge, sea-level rise and human activities. Assessment of the intrinsic vulnerability of groundwater under climate scenarios was performed for the aquifer area by utilising the results of a published study on the impacts of climate change on groundwater recharge and sea-level rise on groundwater–seawater interaction. Three intrinsic vulnerability mapping methods, the aquifer vulnerability index (AVI), a modified SINTACS and GALDIT, were applied and compared. According to the results, the degree of groundwater vulnerability is greatly impacted by seasonal variations in groundwater recharge during the year, and also varies depending on the climate-change variability in the long term. The groundwater is potentially highly vulnerable to contamination from sources on the ground surface during high groundwater recharge rates after snowmelt, while a high vulnerability to seawater intrusion could exist when there is a low groundwater recharge rate in dry season. The AVI results suggest that a change in the sea level will have an insignificant impact on groundwater vulnerability compared with the results from the modified SINTACS and GALDIT. The modified SINTACS method could be used as a guideline for the groundwater vulnerability assessment of glacial and deglacial deposits in inland aquifers, and in combination with GALDIT, it could provide a useful tool for assessing groundwater vulnerability to both contamination from sources on the ground surface and to seawater intrusion for shallow unconfined low-lying coastal aquifers under future climate-change conditions. © 2016, The Author(s).
引用
收藏
页码:203 / 222
页数:19
相关论文
共 61 条
[1]  
Ahonen J., Huusko A., Sallasmaa O., Palmu J.P., Virkki H., Valjus T., Saarelainen J., Raisanen J., Martinkauppi A., Vaananen T., Putkinen N., Putkinen S., Huttunen T., Laxstrom H., Nurminen T., Thickness of superficial deposits in Finland, The 2nd Finnish National Colloquium of Geosciences, (2015)
[2]  
Aller L., Bennett T., Lehr J.H., Petty R.H., Hackett G., DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. USEPA report 600/2-87/035, Robert S, (1987)
[3]  
Allouche N., Brahim F.B., Gontara M., Khanfir H., Bouri S., Validation of two applied methods of groundwater vulnerability mapping: application to the coastal aquifer system of Southern Sfax (Tunisia), AQUA, 64, 6, pp. 719-737, (2015)
[4]  
Appelo C.A., Postma D., Geochemistry, groundwater and pollution, (2005)
[5]  
Ataie-Ashtiani B., Werner A.D., Simmons C.T., Morgan L.K., Lu C., How important is the impact of land-surface inundation on seawater intrusion caused by sea-level rise?, Hydrogeol J, 21, pp. 1673-1677, (2013)
[6]  
Backman B., Luoma S., Schmidt-Thome P., Laitinen J., Potential risks for shallow groundwater aquifers in coastal areas of the Baltic Sea, a case study in the Hanko area in south Finland. CIVPRO Working Paper 2007 (2), Geological Survey of Finland, (2007)
[7]  
Barlow P.M., Ground water in fresh water-salt water environments of the Atlantic Coast, US Geol Surv Circ, (2003)
[8]  
Beebe C.R., Ferguson G., Gleeson T., Morgan L.K., Werner A.D., Application of an analytical solution as a screening tool for Sea Water Intrusion, Groundwater, (2016)
[9]  
Chachadi A.G., Lobo-Ferreira J.P., Seawater intrusion vulnerability mapping of aquifers using GALDIT method. Proceedings of the workshop on modelling in hydrogeology, (2001)
[10]  
Chachadi A.G., Lobo-Ferreira J.P., Assessing aquifer vulnerability to seawater intrusion using GALDIT method: part 2, GALDIT indicators description, Water Celt Countries Quant Qual Clim Var, 310, pp. 172-180, (2007)