Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering

被引:0
|
作者
Zhijin Wu
Hao Wu
机构
[1] Department of Biostatistics,
[2] Brown University,undefined
[3] Department of Biostatistics and Bioinformatics,undefined
[4] Rollins School of Public Health,undefined
[5] Emory University,undefined
来源
Genome Biology | / 21卷
关键词
Gene expression; Single cell RNA-seq; Clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Cell clustering is one of the most common routines in single cell RNA-seq data analyses, for which a number of specialized methods are available. The evaluation of these methods ignores an important biological characteristic that the structure for a population of cells is hierarchical, which could result in misleading evaluation results. In this work, we develop two new metrics that take into account the hierarchical structure of cell types. We illustrate the application of the new metrics in constructed examples as well as several real single cell datasets and show that they provide more biologically plausible results.
引用
收藏
相关论文
共 50 条
  • [31] Cardiovascular utility of single cell RNA-Seq
    Safabakhsh, Sina
    Ma, Wei Feng
    Miller, Clint L. L.
    Laksman, Zachary
    CURRENT OPINION IN CARDIOLOGY, 2023, 38 (03) : 193 - 200
  • [32] Comparative Toxicotranscriptomics of Single Cell RNA-Seq and Conventional RNA-Seq in TCDD-Exposed Testicular Tissue
    Haimbaugh, Alex
    Meyer, Danielle
    Akemann, Camille
    Gurdziel, Katherine
    Baker, Tracie R.
    FRONTIERS IN TOXICOLOGY, 2022, 4
  • [33] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [34] Multiobjective Deep Clustering and Its Applications in Single-cell RNA-seq Data
    Wang, Yunhe
    Bian, Chuang
    Wong, Ka-Chun
    Li, Xiangtao
    Yang, Shengxiang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08): : 5016 - 5027
  • [35] Single-Cell RNA-Seq Debiased Clustering via Batch Effect Disentanglement
    Li, Yunfan
    Lin, Yijie
    Hu, Peng
    Peng, Dezhong
    Luo, Han
    Peng, Xi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11371 - 11381
  • [36] PhytoCluster: a generative deep learning model for clustering plant single-cell RNA-seq data
    Wang, Hao
    Fu, Xiangzheng
    Liu, Lijia
    Wang, Yi
    Hong, Jingpeng
    Pan, Bintao
    Cao, Yaning
    Chen, Yanqing
    Cao, Yongsheng
    Ma, Xiaoding
    Fang, Wei
    Yan, Shen
    ABIOTECH, 2025,
  • [37] Clustering single-cell RNA-seq data by rank constrained similarity learning
    Mei, Qinglin
    Li, Guojun
    Su, Zhengchang
    BIOINFORMATICS, 2021, 37 (19) : 3235 - 3242
  • [38] SC3: consensus clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Kirschner, Kristina
    Schaub, Michael T.
    Andrews, Tallulah
    Yiu, Andrew
    Chandra, Tamir
    Natarajan, Kedar N.
    Reik, Wolf
    Barahona, Mauricio
    Green, Anthony R.
    Hemberg, Martin
    NATURE METHODS, 2017, 14 (05) : 483 - +
  • [39] scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks
    Liu, Tianxiang
    Jia, Cangzhi
    Bi, Yue
    Guo, Xudong
    Zou, Quan
    Li, Fuyi
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [40] scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data
    Wang, Shudong
    Zhang, Yu
    Zhang, Yulin
    Wu, Wenhao
    Ye, Lan
    Li, Yunyin
    Su, Jionglong
    Pang, Shanchen
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163