A combinatorial Li–Yau inequality and rational points on curves

被引:0
|
作者
Gunther Cornelissen
Fumiharu Kato
Janne Kool
机构
[1] Universiteit Utrecht,Mathematisch Instituut
[2] Kumamoto University,Department of Mathematics
[3] Max-Planck-Institut für Mathematik,undefined
来源
Mathematische Annalen | 2015年 / 361卷
关键词
05C50; 11G09; 11G18; 11G30; 14G05; 14G22; 14H51;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method to control gonality of nonarchimedean curves based on graph theory. Let k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} denote a complete nonarchimedean valued field. We first prove a lower bound for the gonality of a curve over the algebraic closure of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} in terms of the minimal degree of a class of graph maps, namely: one should minimize over all so-called finite harmonic graph morphisms to trees, that originate from any refinement of the dual graph of the stable model of the curve. Next comes our main result: we prove a lower bound for the degree of such a graph morphism in terms of the first eigenvalue of the Laplacian and some “volume” of the original graph; this can be seen as a substitute for graphs of the Li–Yau inequality from differential geometry, although we also prove that the strict analogue of the original inequality fails for general graphs. Finally, we apply the results to give a lower bound for the gonality of arbitrary Drinfeld modular curves over finite fields and for general congruence subgroups Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} of Γ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (1)$$\end{document} that is linear in the index [Γ(1):Γ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\varGamma (1):\varGamma ]$$\end{document}, with a constant that only depends on the residue field degree and the degree of the chosen “infinite” place. This is a function field analogue of a theorem of Abramovich for classical modular curves. We present applications to uniform boundedness of torsion of rank two Drinfeld modules that improve upon existing results, and to lower bounds on the modular degree of certain elliptic curves over function fields that solve a problem of Papikian.
引用
收藏
页码:211 / 258
页数:47
相关论文
共 50 条
  • [21] Heights of rational points on Mordell curves
    Zhao, Alan
    JOURNAL OF NUMBER THEORY, 2025, 272 : 18 - 33
  • [22] ON THE ELLIPTIC CURVES WITH INFINITE RATIONAL POINTS
    Kwon, Jung Won
    Park, Hwasin
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (05): : 843 - 854
  • [23] Rational points on a class of superelliptic curves
    Sander, JW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 422 - 434
  • [24] RATIONAL POINTS OF A CLASS OF ALGEBRAIC CURVES
    DEMYANEN.VA
    DOKLADY AKADEMII NAUK SSSR, 1966, 171 (06): : 1259 - &
  • [25] RATIONAL POINTS ON JACOBIANS OF MODULAR CURVES
    BERKOVIC, VG
    MATHEMATICS OF THE USSR-SBORNIK, 1976, 30 (04): : 478 - 500
  • [26] RATIONAL POINTS ON THREE SUPERELLIPTIC CURVES
    Shen, Zhongyan
    Cai, Tianxin
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 85 (01) : 105 - 113
  • [27] Number of rational points of elliptic curves
    Duris, Viliam
    Sumny, Timotej
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (01)
  • [28] Counting rational points on cubic curves
    Roger Heath-Brown
    Damiano Testa
    Science China Mathematics, 2010, 53 : 2259 - 2268
  • [29] Fat points on rational normal curves
    Catalisano, MV
    Ellia, P
    Gimigliano, A
    JOURNAL OF ALGEBRA, 1999, 216 (02) : 600 - 619
  • [30] On the denominators of rational points on elliptic curves
    Everest, Graham
    Reynolds, Jonathan
    Stevens, Shaun
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 762 - 770