Wrapper Filter Approach for Accelerometer-Based Human Activity Recognition

被引:0
作者
Laith Al-Frady
Ali Al-Taei
机构
[1] Middle Technical University,
[2] Ministry of Higher Education and Scientific Research,undefined
来源
Pattern Recognition and Image Analysis | 2020年 / 30卷
关键词
human activity recognition; accelerometer; feature selection; machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:757 / 764
页数:7
相关论文
共 93 条
[1]  
Micucci D.(2017)Unimib shar: A dataset for human activity recognition using acceleration data from smartphones Appl. Sci. 7 1101-457
[2]  
Mobilio M.(2014)A study on human activity recognition using accelerometer data from smartphones Procedia Comput. Sci. 34 450-1453
[3]  
Napoletano P.(2020)Inertial sensor-based human activity recognition via ensemble extreme learning machines optimized by quantum-behaved particle swarm J. Intell. Fuzzy Syst. 38 1443-1786
[4]  
Bayat A.(2014)Feature selection and activity recognition system using a single triaxial accelerometer IEEE Trans. Biomed. Eng. 61 1780-4181
[5]  
Pomplun M.(2017)Multimodal similarity Gaussian process latent variable model IEEE Trans. Image Process. 26 4168-5121
[6]  
Tran D. A.(2018)Vision-based human action classification using adaptive boosting algorithm IEEE Sensors J. 18 5115-186
[7]  
Tian Y.(2020)Vision-based human action recognition: An overview and real world challenges Forensic Sci. Int.: Digital Invest. 32 200901-1862
[8]  
Wang X.(2016)Acceptance of seniors towards automatic in home fall detection devices J. Assistive Technol. 10 178-10496
[9]  
Geng Y.(2016)Wearable monitors for patients following discharge from an intensive care unit: Practical lessons learnt from an observational study J. Adv. Nurs. 72 1851-116
[10]  
Liuand Z.(2018)Internet-of-things and smart homes for elderly healthcare: An end user perspective IEEE Access 6 10483-767